2 research outputs found

    Empirical Study on 5G NR Cochannel Coexistence

    No full text
    The 5G non-public network deployments for industrial applications are becoming highly interesting for industries and enterprises owing to dependable wireless performance characteristics. With an increasing trend of network deployments in local licensed and/or shared spectrum, coexistence issues naturally arise. In this article, we present our detailed empirical results on the performance impact of a 5G NR indoor non-public network from a 5G NR outdoor network operating in the same mid-band spectrum. We present experimental results on the uplink and downlink performance impact of a non-public indoor network deployed on an industrial shopfloor. Our results quantify the impact on the uplink and downlink performance characteristics based on realistic traffic loads in a non-public indoor network when using synchronized and unsynchronized Time Division Duplex (TDD) patterns, different UE deployment locations and interference levels. We also present results on mitigating interference effects through robust link adaptation techniques. We believe that this is the first article, which reports quantified 5G NR cochannel coexistence results based on a detailed and systematic study, and provides signficant insights on the cochannel coexistence behavior in realistic deployment scenarios of an industrial shopfloor

    Empirical Study on 5G NR Cochannel Coexistence

    No full text
    The 5G non-public network deployments for industrial applications are becoming highly interesting for industries and enterprises owing to dependable wireless performance characteristics. With an increasing trend of network deployments in local licensed and/or shared spectrum, coexistence issues naturally arise. In this article, we present our detailed empirical results on the performance impact of a 5G NR indoor non-public network from a 5G NR outdoor network operating in the same mid-band spectrum. We present experimental results on the uplink and downlink performance impact of a non-public indoor network deployed on an industrial shopfloor. Our results quantify the impact on the uplink and downlink performance characteristics based on realistic traffic loads in a non-public indoor network when using synchronized and unsynchronized Time Division Duplex (TDD) patterns, different UE deployment locations and interference levels. We also present results on mitigating interference effects through robust link adaptation techniques. We believe that this is the first article, which reports quantified 5G NR cochannel coexistence results based on a detailed and systematic study, and provides signficant insights on the cochannel coexistence behavior in realistic deployment scenarios of an industrial shopfloor
    corecore