71 research outputs found
Surgical treatment of displaced intra-articular calcaneal fracture using a single small lateral approach
The objective of this study was to evaluate the outcome of semi-open reduction and minimal internal fixation through a single small lateral approach as a minimally invasive technique for treatment of displaced intra-articular calcaneal fractures. This prospective study was conducted on eighteen patients (16 men and 2 women). The average age was 37.7 (22–55). The most common cause of injury was a fall from height in fourteen patients. Patients were operated on within a mean time of 4.8 days of admission (1–11 days) and were followed up for an average period of 24.1 months (6–39 months). Patients were evaluated clinically using the Creighton-Nebraska Heath Foundation Assessment score of Crosby and Fitzgibbons (J Bone Joint Surg (Am) 72-A:852–859, 1990). The scoring system proposed by Knirk and Jupiter was used for radiological assessment of the posterior subtalar joint (Knirk and Jupiter in J Bone Joint Surg (Am) 68-A: 647–659, 1986). The skin incision healed in all cases without necrosis, infection, or sural nerve injury. All fractures healed after an average of 8 weeks (7–10 weeks), and patients returned to the routine daily activities after an average time of 4.3 months (3–7 months). In conclusion, semi-open reduction and minimal internal fixation through a small lateral approach is an effective treatment for carefully selected cases of displaced intra-articular calcaneal fractures
Metastability and the Casimir Effect in Micromechanical Systems
Electrostatic and Casimir interactions limit the range of positional
stability of electrostatically-actuated or capacitively-coupled mechanical
devices. We investigate this range experimentally for a generic system
consisting of a doubly-clamped Au suspended beam, capacitively-coupled to an
adjacent stationary electrode. The mechanical properties of the beam, both in
the linear and nonlinear regimes, are monitored as the attractive forces are
increased to the point of instability. There "pull-in" occurs, resulting in
permanent adhesion between the electrodes. We investigate, experimentally and
theoretically, the position-dependent lifetimes of the free state (existing
prior to pull-in). We find that the data cannot be accounted for by simple
theory; the discrepancy may be reflective of internal structural instabilities
within the metal electrodes.Comment: RevTex, 4 pages, 4 figure
Influence of random roughness on the Casimir force at small separations
The influence of random surface roughness of Au films on the Casimir force is
explored with atomic force microscopy in the plate-sphere geometry. The
experimental results are compared to theoretical predictions for separations
ranging between 20 and 200 nm. The optical response and roughness of the Au
films were measured and used as input in theoretical predictions. It is found
that at separations below 100 nm, the roughness effect is manifested through a
strong deviation from the normal scaling of the force with separation distance.
Moreover, deviations from theoretical predictions based on perturbation theory
can be larger than 100%.Comment: 18, 5 figure
Efficient out-coupling and beaming of Tamm optical states via surface plasmon polariton excitation
We present evidence of optical Tamm states to surface plasmon polariton (SPP) coupling. We experimentally demonstrate that for a Bragg stack with a thin metal layer on the surface, hybrid Tamm-SPP modes may be excited when a grating on the air-metal interface is introduced. Out-coupling via the grating to free space propagation is shown to enhance the transmission as well as the directionality and polarization selection for the transmitted beam. We suggest that this system will be useful on those devices, where a metallic electrical contact as well as beaming and polarization control is needed
Efficient out-coupling and beaming of Tamm optical states via surface plasmon polariton excitation
We present evidence of optical Tamm states to surface plasmon polariton (SPP) coupling. We experimentally demonstrate that for a Bragg stack with a thin metal layer on the surface, hybrid Tamm-SPP modes may be excited when a grating on the air-metal interface is introduced. Out-coupling via the grating to free space propagation is shown to enhance the transmission as well as the directionality and polarization selection for the transmitted beam. We suggest that this system will be useful on those devices, where a metallic electrical contact as well as beaming and polarization control is needed
Stiction, Adhesion Energy and the Casimir Effect in Micromechanical Systems
We measure the adhesion energy of gold using a micromachined doubly-clamped
beam. The stress and stiffness of the beam are characterized by measuring the
spectrum of mechanical vibrations and the deflection due to an external force.
To determine the adhesion energy we induce stiction between the beam and a
nearby surface by capillary forces. Subsequent analysis yields a value J/m that is a factor of approximately six smaller than predicted
by idealized theory. This discrepancy may be resolved with revised models that
include surface roughness and the effect of adsorbed monolayers intervening
between the contacting surfaces in these mesoscopic structures.Comment: RevTex, 4 pages, 4 eps figure
Comment on the sign of the Casimir force
I show that reflection positivity implies that the force between any mirror
pair of charge-conjugate probes of the quantum vacuum is attractive. This
generalizes a recent theorem of Kenneth and Klich to interacting quantum
fields, to arbitrary semiclassical bodies, and to quantized probes with
non-overlapping wavefunctions. I also prove that the torques on
charge-conjugate probes tend always to rotate them into a mirror-symmetric
position.Comment: 13 pages, 1 figure, Latex file. Several points clarified and
expanded, two references added
Normal and Lateral Casimir Forces between Deformed Plates
The Casimir force between macroscopic bodies depends strongly on their shape
and orientation. To study this geometry dependence in the case of two deformed
metal plates, we use a path integral quantization of the electromagnetic field
which properly treats the many-body nature of the interaction, going beyond the
commonly used pairwise summation (PWS) of van der Waals forces. For arbitrary
deformations we provide an analytical result for the deformation induced change
in Casimir energy, which is exact to second order in the deformation amplitude.
For the specific case of sinusoidally corrugated plates, we calculate both the
normal and the lateral Casimir forces. The deformation induced change in the
Casimir interaction of a flat and a corrugated plate shows an interesting
crossover as a function of the ratio of the mean platedistance H to the
corrugation length \lambda: For \lambda \ll H we find a slower decay \sim
H^{-4}, compared to the H^{-5} behavior predicted by PWS which we show to be
valid only for \lambda \gg H. The amplitude of the lateral force between two
corrugated plates which are out of registry is shown to have a maximum at an
optimal wavelength of \lambda \approx 2.5 H. With increasing H/\lambda \gtrsim
0.3 the PWS approach becomes a progressively worse description of the lateral
force due to many-body effects. These results may be of relevance for the
design and operation of novel microelectromechanical systems (MEMS) and other
nanoscale devices.Comment: 20 pages, 5 figure
A dyadic approach to understanding the impact of breast cancer on relationships between partners during early survivorship
© 2016 The Author(s). Background: The shared impact of breast cancer for women and their male partners is emerging as an important consideration during the experience of a breast cancer diagnosis, particularly during survivorship. This study aimed to explore the experiences of women and their partners during early survivorship and contributes a range of insights into the lives of those intimately affected by breast cancer. Methods: In-depth interviews were completed with Australian women survivors of breast cancer (n = 8) and their partners (n = 8), between six months and five years following cessation of treatment. Questions included a focus on the women and their partners' daily experiences during early survivorship, including the management of ongoing symptoms, engagement in leisure and social interests, returning to work, communicating with each other, maintenance of the current relationship and other important roles and responsibilities. Thematic analysis was employed to determine key themes arising from the dyadic accounts of women and their partners' experiences during early breast cancer survivorship. Results: Women and their partners experienced many changes to their previous roles, responsibilities and relationships during early breast cancer survivorship. Couples also reported a range of communication, intimacy and sexuality concerns which greatly impacted their interactions with each other, adding further demands on the relationship. Three significant themes were determined: (1) a disconnection within the relationship - this was expressed as the woman survivor of breast cancer needing to prioritise her own needs, sometimes at the expense of her partner and the relationship; (2) reformulating the relationship - this reflects the strategies used by couples to negotiate changes within the relationship; and (3) support is needed to negotiate the future of the relationship - couples emphasised the need for additional support and resources to assist them in maintaining their relationship during early survivorship. Conclusion: It can be concluded that the early survivorship period represents a crucial time for both women and their partners and there are currently limited options available to meet their shared needs and preferences for support. Findings indicate that a suitable model of care underpinned by a biopsychosocial framework, access to comprehensive assessment, timely support and the provision of targeted resources are urgently needed to assist women and their partners during this critical time
Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.
Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability
- …