310 research outputs found
Summer Atmospheric Circulation Anomalies over the Arctic Ocean and Their Influences on September Sea Ice Extent: A Cautionary Tale
Numerous studies have addressed links between summer atmospheric circulation patterns and inter-annual variability and the downward trend in total September Arctic sea ice extent. In general, low extent is favored when the preceding summer is characterized by positive sea level pressure (SLP) anomalies over the central Arctic Ocean north of Alaska. High extent is favored when low pressure dominates. If such atmospheric patterns could be predicted several months out, these links provide an avenue for improved seasonal predictability of total September extent. We analyze de-trended September extent time series (1979-2015), atmospheric reanalysis fields, ice age and motion, and AIRS data, to show that while there is merit to this summer circulation framework, it has limitations. Large departures in total September extent relative to the trend line are preceded by a wide range of summer circulation patterns. While patterns for the four years with the largest positive departures in September extent have below average SLP over the central Arctic Ocean, they differ markedly in the magnitude and location of pressure and air temperature anomalies. Differences in circulation for the four years with the largest negative departures are equally prominent. Circulation anomalies preceding Septembers with ice extent close to the trend also have a wide range of patterns. In turn, years (such as 2013 and 2014) with almost identical total September extent, were preceded by very different summer circulation patterns. September ice conditions can also be strongly shaped by events as far back as the previous winter or spring
Variability, trends and predictability of seasonal sea ice retreat and advance in the Chukchi Sea
As assessed over the period 1979â2014, the date that sea ice retreats to the shelf break (150 m contour) of the Chukchi Sea has a linear trend of â0.7 days per year. The date of seasonal ice advance back to the shelf break has a steeper trend of about +1.5 days per year, together yielding an increase in the open water period of 80 days. Based on detrended time series, we ask how interannual variability in advance and retreat dates relate to various forcing parameters including radiation fluxes, temperature and wind (from numerical reanalyses), and the oceanic heat inflow through the Bering Strait (from in situ moorings). Of all variables considered, the retreat date is most strongly correlated (r ⌠0.8) with the April through June Bering Strait heat inflow. After testing a suite of statistical linear models using several potential predictors, the best model for predicting the date of retreat includes only the April through June Bering Strait heat inflow, which explains 68% of retreat date variance. The best model predicting the ice advance date includes the July through September inflow and the date of retreat, explaining 67% of advance date variance. We address these relationships by discussing heat balances within the Chukchi Sea, and the hypothesis of oceanic heat transport triggering ocean heat uptake and ice-albedo feedback. Developing an operational prediction scheme for seasonal retreat and advance would require timely acquisition of Bering Strait heat inflow data. Predictability will likely always be limited by the chaotic nature of atmospheric circulation patterns
Linkages between Arctic summer circulation regimes and regional sea ice anomalies
The downward trend in overall Arctic summer sea ice extent has been substantial, particularly in the last few decades. Departures in ice extent from year to year can be very large, however, in part due to the high variability in summer atmospheric circulation patterns. Anomalies in the Pacific sector ice cover can be partially compensated by anomalies of opposite sign in the Atlantic sector. An assessment of linkages between summer atmospheric patterns and sectoral anomalies in the area of maximum open water north of 70°N demonstrates that there is asymmetry in the mechanisms. Years with low ice extent and high open water fraction are uniformly associated with positive temperature anomalies and southerly flow in both the Atlantic and Pacific sectors. However, years with high extent and low open water fraction in both sectors reveal two dominant mechanisms. Some years with anomalously low maximum open water fraction are associated with negative temperature anomalies and southerly transportâa cool summer pattern that allows ice to persist over larger areas. However, other low open water years are characterized by an âice factoryâ mechanism, wherebyâeven when meltingâice cover is continually replenished by advection from the north
Record winter winds in 2020/21 drove exceptional Arctic sea ice transport
AbstractThe volume of Arctic sea ice is in decline but exhibits high interannual variability, which is driven primarily by atmospheric circulation. Through analysis of satellite-derived ice products and atmospheric reanalysis data, we show that winter 2020/21 was characterised by anomalously high sea-level pressure over the central Arctic Ocean, which resulted in unprecedented anticyclonic winds over the sea ice. This atmospheric circulation pattern drove older sea ice from the central Arctic Ocean into the lower-latitude Beaufort Sea, where it is more vulnerable to melting in the coming warm season. We suggest that this unusual atmospheric circulation may potentially lead to unusually high summer losses of the Arcticâs remaining store of old ice.</jats:p
Stormiest winter on record for Ireland and UK
Meteorological agencies of Ireland and the UK have confirmed that winter (December to
February) 2013-14 (W2013/14) set records for precipitation totals and the occurrence of
extreme wind speeds1,2,3. Less clear is whether storminess (characterised as the frequency
and intensity of cyclones) during W2013/14 was equally unprecedented. We assess multidecadal
variations in storminess by considering frequency and intensity together and find
that W2013/14 was indeed exceptional. Given the potential societal impacts there is clearly
a need to better understand the processes driving extreme cyclonic activity in the North
Atlantic (NA)
Diminished temperature and vegetation seasonality over northern high latitudes
Global temperature is increasing, especially over northern lands (>50°âN), owing to positive feedbacks1. As this increase is most pronounced in winter, temperature seasonality (ST)âconventionally defined as the difference between summer and winter temperaturesâis diminishing over time2, a phenomenon that is analogous to its equatorward decline at an annual scale. The initiation, termination and performance of vegetation photosynthetic activity are tied to threshold temperatures3. Trends in the timing of these thresholds and cumulative temperatures above them may alter vegetation productivity, or modify vegetation seasonality (SV), over time. The relationship between ST and SV is critically examined here with newly improved ground and satellite data sets. The observed diminishment of ST and SV is equivalent to 4° and 7° (5° and 6°) latitudinal shift equatorward during the past 30 years in the Arctic (boreal) region. Analysis of simulations from 17 state-of-the-art climate models4 indicates an additional STdiminishment equivalent to a 20° equatorward shift could occur this century. How SV will change in response to such large projected ST declines and the impact this will have on ecosystem services5 are not well understood. Hence the need for continued monitoring6 of northern lands as their seasonal temperature profiles evolve to resemble thosefurther south.Lopullinen vertaisarvioitu kĂ€sikirjoitu
Eurasian Arctic greening reveals teleconnections and the potential for novel ecosystems
Arctic warming has been linked to observed increases in tundra shrub cover and growth in recent decades on the basis of significant relationships between deciduous shrub growth/biomass and temperature. These vegetation trends have been linked to Arctic sea ice decline and thus to the sea ice/albedo feedback known as Arctic amplification. However, the interactions between climate, sea ice and tundra vegetation remain poorly understood. Here we reveal a 50- year growth response over a >100,000 km2 area to a rise in summer temperature for alder (Alnus) and willow (Salix), the most abundant shrub genera respectively at and north of the continental treeline. We demonstrate that whereas plant productivity is related to sea ice in late spring, the growing season peak responds to persistent synoptic-scale air masses over West Siberia associated with Fennoscandian weather systems through the Rossby wave train. Substrate is important for biomass accumulation, yet a strong correlation between growth and temperature encompasses all observed soil types. Vegetation is especially responsive to temperature in early summer. These results have significant implications for modelling present and future Low Arctic vegetation responses to climate change, and emphasize the potential for structurally novel ecosystems to emerge fromwithin the tundra zone.Vertaisarviointia edeltÀvÀ kÀsikirjoitu
Solve Antarcticaâs sea-ice puzzle
John Turner and Josefino Comiso call for a coordinated push to crack the baffling rise and fall of sea ice around Antarctica
Amplified mid-latitude planetary waves favour particular regional weather extremes
Copyright © 2014 Nature Publishing GroupThere has been an ostensibly large number of extreme weather events in the Northern Hemisphere mid-latitudes during the past decade [1]. An open question that is critically important for scientists and policy makers is whether any such increase in weather extremes is natural or anthropogenic in origin [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. One mechanism proposed to explain the increased frequency of extreme weather events is the amplification of mid-latitude atmospheric planetary waves [14, 15, 16, 17]. Disproportionately large warming in the northern polar regions compared with mid-latitudesâand associated weakening of the northâsouth temperature gradientâmay favour larger amplitude planetary waves [14, 15, 16, 17], although observational evidence for this remains inconclusive [18, 19, 20, 21]. A better understanding of the role of planetary waves in causing mid-latitude weather extremes is essential for assessing the potential environmental and socio-economic impacts of future planetary wave changes. Here we show that months of extreme weather over mid-latitudes are commonly accompanied by significantly amplified quasi-stationary mid-tropospheric planetary waves. Conversely, months of near-average weather over mid-latitudes are often accompanied by significantly attenuated waves. Depending on geographical region, certain types of extreme weather (for example, hot, cold, wet, dry) are more strongly related to wave amplitude changes than others. The findings suggest that amplification of quasi-stationary waves preferentially increases the probabilities of heat waves in western North America and central Asia, cold outbreaks in eastern North America, droughts in central North America, Europe and central Asia, and wet spells in western Asia.Natural Environment Research Council (NERC
- âŠ