17 research outputs found
VOC 202012/01 Variant Is Effectively Neutralized by Antibodies Produced by Patients Infected before Its Diffusion in Italy
The coronavirus disease 2019 (Covid-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and presents a global health emergency that needs urgent intervention. Viruses constantly change through mutation, and new variants of a virus are expected to occur over time. In the United Kingdom (UK), a new variant called B.1.1.7 has emerged with an unusually large number of mutations. The aim of this study is to evaluate the level of protection of sera from 12 patients infected and later healed in Apulia Region (Italy) with Covid-19 between March and November 2020, when the English variant was not circulating in this territory yet, against the new VOC 202012/01 variant by seroneutralization assay. The sera of patients had already been tested before, using a virus belonging to the lineage B.1 and showed an antibody neutralizing titer ranging between 1:160 and 1:320. All the 12 sera donors confirmed the same titers of neutralizing antibodies obtained with a strain belonging to the lineage B.1.1.7 (VOC 202012/01). These data indicate that antibodies produced in subjects infected with variants of Sars-CoV-2 strain before the appearance of the English one, seem to have a neutralizing power also against this variant
Development of a real time PCR Taqman assay based on the TPI gene for simultaneous identification of Clostridium chauvoei and Clostridium septicum
In the present study, a Taqman allelic discrimination assay based on three SNPs of the TPI gene is described. It was used as a differential diagnostic tool to detect blackleg and malignant edema. Sudden deaths of grazing ruminants, such as cattle, sheep and goats, which show clinical signs related to hyperacute infective processes, encouraged the development of a rapid and precise diagnostic molecular method. Specific primers and probes for Clostridium septicum and Clostridium chauvoei were designed on the basis of the TPI gene sequence. The multiplex PCR was tested on the DNA of a total of 57 strains, including 24 Clostridium chauvoei, 20 Clostridium septicum, 1 Bacillus anthracis and 12 other Clostridium spp. The DNA samples from Clostridium chauvoei and Clostridium septicum strains were amplified. Amplification of other DNA samples was not observed, with the exception of Clostridium tertium, which showed a weak positive signal. To avoid misdiagnosis, a confirmatory assay based on a Sybr green real time PCR was proposed. The authors confirmed the efficacy and the specificity of the test used in this study, which proved to be a useful tool for the diagnosis of clostridiosis that are often diagnosed using only traditional tools