270 research outputs found

    Transcriptomic resources for an endemic Neotropical plant lineage (Gesneriaceae).

    Get PDF
    Despite the extensive phenotypic variation that characterizes the Gesneriaceae family, there is a lack of genomic resources to investigate the molecular basis of their diversity. We developed and compared the transcriptomes for two species of the Neotropical lineage of the Gesneriaceae. Illumina sequencing and de novo assembly of floral and leaf samples were used to generate multigene sequence data for Sinningia eumorpha and S. magnifica, two species endemic to the Brazilian Atlantic Forest. A total of 300 million reads were used to assemble the transcriptomes, with an average of 92,038 transcripts and 43,506 genes per species. The transcriptomes showed good quality metrics, with the presence of all eukaryotic core genes, and an equal representation of clusters of orthologous groups (COG) classifications between species. The orthologous search produced 8602 groups, with 15-20% of them annotated using BLAST tools. This study provides the first step toward a comprehensive multispecies transcriptome characterization of the Gesneriaceae family. These resources are the basis for comparative analyses in this species-rich Neotropical plant group; they will also allow the investigation of the evolutionary importance of multiple metabolic pathways and phenotypic diversity, as well as developmental programs in these nonmodel species

    Almost strictly sign regular rectangular matrices

    Get PDF
    Almost strictly sign regular matrices are sign regular matrices with a special zero pattern and whose nontrivial minors are nonzero. In this paper we provide several properties of almost strictly sign regular rectangular matrices of maximal rank and analyze their QR factorization

    Almost strictly sign regular matrices and Neville elimination with two-determinant pivoting

    Get PDF
    In 2007 Cortés and Peña introduced a pivoting strategy for the Neville elimination of nonsingular sign regular matrices and called it two-determinant pivoting. Neville elimination has been very useful for obtaining theoretical and practical properties for totally positive (negative) matrices and other related types of matrices. A real matrix is said to be almost strictly sign regular if all its nontrivial minors of the same order have the same strict sign. In this paper, some nice properties related with the application of Neville elimination with two-determinant pivoting strategy to almost strictly sign regular matrices are presented

    Comparing pivoting strategies for almost strictly sign regular matrices

    Get PDF
    In this paper some properties of two-determinant pivoting for Neville elimination are presented. In particular, we consider a zero-increasing property and we show an optimal normwise growth factor. Comparisons with other pivoting strategies for Neville elimination and with Gaussian elimination with partial pivoting of almost strictly sign regular matrices are performed. Numerical examples are included

    Decoupled evolution of floral traits and climatic preferences in a clade of Neotropical Gesneriaceae.

    Get PDF
    BACKGROUND: Major factors influencing the phenotypic diversity of a lineage can be recognized by characterizing the extent and mode of trait evolution between related species. Here, we compared the evolutionary dynamics of traits associated with floral morphology and climatic preferences in a clade composed of the genera Codonanthopsis, Codonanthe and Nematanthus (Gesneriaceae). To test the mode and specific components that lead to phenotypic diversity in this group, we performed a Bayesian phylogenetic analysis of combined nuclear and plastid DNA sequences and modeled the evolution of quantitative traits related to flower shape and size and to climatic preferences. We propose an alternative approach to display graphically the complex dynamics of trait evolution along a phylogenetic tree using a wide range of evolutionary scenarios. RESULTS: Our results demonstrated heterogeneous trait evolution. Floral shapes displaced into separate regimes selected by the different pollinator types (hummingbirds versus insects), while floral size underwent a clade-specific evolution. Rates of evolution were higher for the clade that is hummingbird pollinated and experienced flower resupination, compared with species pollinated by bees, suggesting a relevant role of plant-pollinator interactions in lowland rainforest. The evolution of temperature preferences is best explained by a model with distinct selective regimes between the Brazilian Atlantic Forest and the other biomes, whereas differentiation along the precipitation axis was characterized by higher rates, compared with temperature, and no regime or clade-specific patterns. CONCLUSIONS: Our study shows different selective regimes and clade-specific patterns in the evolution of morphological and climatic components during the diversification of Neotropical species. Our new graphical visualization tool allows the representation of trait trajectories under parameter-rich models, thus contributing to a better understanding of complex evolutionary dynamics

    Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa.

    Get PDF
    Cannabis sativa has long been an important source of fiber extracted from hemp and both medicinal and recreational drugs based on cannabinoid compounds. Here, we investigated its poorly known domestication history using whole-genome resequencing of 110 accessions from worldwide origins. We show that C. sativa was first domesticated in early Neolithic times in East Asia and that all current hemp and drug cultivars diverged from an ancestral gene pool currently represented by feral plants and landraces in China. We identified candidate genes associated with traits differentiating hemp and drug cultivars, including branching pattern and cellulose/lignin biosynthesis. We also found evidence for loss of function of genes involved in the synthesis of the two major biochemically competing cannabinoids during selection for increased fiber production or psychoactive properties. Our results provide a unique global view of the domestication of C. sativa and offer valuable genomic resources for ongoing functional and molecular breeding research

    Analysis of Physical–Cognitive Tasks Including Feedback-Based Technology for Alzheimer’s Disorder in a Randomized Experimental Pilot Study

    Get PDF
    Introduction: Alzheimer’s disease causes great changes, with the prefrontal cortex being the most frequently damaged zone; these changes affect physical and cognitive behavior and compromise autonomy. Objective: The objective of this study was to evaluate the effects of physical–cognitive tasks on memory, attention, balance, gait, and risk of falling in Alzheimer’s by using feedback-based technology. Methods: Forty patients with Alzheimer’s were recruited from an Alzheimer’s Association; of these, 15 met the inclusion criteria and were included in the pilot RCT (eight in the control group; seven in the experimental group). Assessment tools: The Cognitive Mini-Examination Scale, Oddball Test and Attention Network, Berg Scale, Tinetti, Timed Up and Go, and Geriatric Deterioration Scale. The experimental group was treated with physical–cognitive tasks by using combined feedback-based technology (visual, acoustic, simultaneous, immediate, and terminal feedback, as well as knowledge of the results and performance) under the supervision of physiotherapists twice per week for 16 thirty-minute sessions. The control group underwent their usual care (pharmacological treatment, mobility exercises, and cognitive stimulation sessions). Result: In the experimental group, the contrast tests showed differences for the re-test (except in attention), with the significative Timed Up and Go test being significant (p = 0.020). The interaction between groups showed significant differences for the experimental group according to the MEC (p = 0.029; d = 0.14) and Tinetti (p = 0.029; d = 0.68). Discussion/Conclusion: Memory, balance, gait, and risk of falling improved in the Alzheimer’s patients through the use of physical–cognitive tasks involving combined feedback-based technology. The effects on attention were inconclusive. The outcomes should be treated with caution due to the sample. This can promote intergenerational bonds, use at home, and adherence to treatment

    Homology Modeling of Leishmanolysin (gp63) from Leishmania panamensis and Molecular Docking of Flavonoids

    Get PDF
    Leishmaniasis is a chronic disease caused by protozoa of the distinct Leishmania genus transmitted by sandflies of the genus Phlebotomus (old world) and Lutzomyia (new world). Among the molecular factors that contribute to the virulence and pathogenesis of Leishmania are metalloproteases, e.g., glycoprotein 63 (gp63), also known as leishmanolysin or major surface protease (MSP). This protease is a zinc-dependent metalloprotease that is found on the surface of the parasite, abundant in Leishmania promastigote and amastigote. This study describes the prediction of three-dimensional (3D) structures of leishmanolysin (UniProt ID A0A088RJX7) of Leishmania panamensis employing a homology modeling approach. The 3D structure prediction was performed using the SWISS-MODEL web server. The tools PROCHECK, Molprobyty, and Verify3D were used to check the quality of the model, indicating that they are reliable. Best docking configurations were identified applying AutoDock Vina in PyRx 0.8 to obtain a potential antileishmanial activity. Biflavonoids such as lanaroflavone, podocarpusflavone A, amentoflavone, and podocarpusflavone B showed good scores among these molecules. Lanaroflavone appears to be the most suitable compound from binding affinity calculations

    Rapid turnover of life-cycle-related genes in the brown algae.

    Get PDF
    Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporophytes are independent and free-living and may present dramatic phenotypic differences. The same shared genome can therefore be subject to different, even conflicting, selection pressures during each of the life cycle generations. Here, we analyze the nature and extent of genome-wide, generation-biased gene expression in four species of brown algae with contrasting levels of dimorphism between life cycle generations. We show that the proportion of the transcriptome that is generation-specific is broadly associated with the level of phenotypic dimorphism between the life cycle stages. Importantly, our data reveals a remarkably high turnover rate for life-cycle-related gene sets across the brown algae and highlights the importance not only of co-option of regulatory programs from one generation to the other but also of a role for newly emerged, lineage-specific gene expression patterns in the evolution of the gametophyte and sporophyte developmental programs in this major eukaryotic group. Moreover, we show that generation-biased genes display distinct evolutionary modes, with gametophyte-biased genes evolving rapidly at the coding sequence level whereas sporophyte-biased genes tend to exhibit changes in their patterns of expression. Our analysis uncovers the characteristics, expression patterns, and evolution of generation-biased genes and underlines the selective forces that shape this previously underappreciated source of phenotypic diversity
    corecore