16,122 research outputs found
Offline and online power aware resource allocation algorithms with migration and delay constraints
© . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In order to handle advanced mobile broadband services and Internet of Things (IoT), future Internet and 5G networks are expected to leverage the use of network virtualization, be much faster, have greater capacities, provide lower latencies, and significantly be power efficient than current mobile technologies. Therefore, this paper proposes three power aware algorithms for offline, online, and migration applications, solving the resource allocation problem within the frameworks of network function virtualization (NFV) environments in fractions of a second. The proposed algorithms target minimizing the total costs and power consumptions in the physical network through sufficiently allocating the least physical resources to host the demands of the virtual network services, and put into saving mode all other not utilized physical components. Simulations and evaluations of the offline algorithm compared to the state-of-art resulted on lower total costs by 32%. In addition to that, the online algorithm was tested through four different experiments, and the results argued that the overall power consumption of the physical network was highly dependent on the demands’ lifetimes, and the strictness of the required end-to-end delay. Regarding migrations during online, the results concluded that the proposed algorithms would be most effective when applied for maintenance and emergency conditions.Peer ReviewedPreprin
Spin and density longitudinal response of quantum dots in time-dependent local-spin-density approximation
The longitudinal dipole response of a quantum dot has been calculated in the
far-infrared regime using local spin density functional theory. We have studied
the coupling between the collective spin and density modes as a function of the
magnetic field. We have found that the spin dipole mode and single particle
excitations have a sizeable overlap, and that the magnetoplasmon modes can be
excited by the dipole spin operator if the dot is spin polarized. The frequency
of the dipole spin edge mode presents an oscillation which is clearly filling
factor () related. We have found that the spin dipole mode is especially
soft for even values, becoming unstable for magnetic fields in the region
. Results for selected number of electrons and confining
potentials are discussed. An analytical model which reproduces the main
features of the microscopic spectra has been developed.Comment: We have added some new references and minor changes on the mnuscript
have been mad
The radial metallicity gradients in the Milky Way thick disk as fossil signatures of a primordial chemical distribution
In this letter we examine the evolution of the radial metallicity gradient
induced by secular processes, in the disk of an -body Milky Way-like galaxy.
We assign a [Fe/H] value to each particle of the simulation according to an
initial, cosmologically motivated, radial chemical distribution and let the
disk dynamically evolve for 6 Gyr. This direct approach allows us to take into
account only the effects of dynamical evolution and to gauge how and to what
extent they affect the initial chemical conditions. The initial [Fe/H]
distribution increases with R in the inner disk up to R ~ 10 kpc and decreases
for larger R. We find that the initial chemical profile does not undergo major
transformations after 6 Gyr of dynamical evolution. The final radial chemical
gradients predicted by the model in the solar neighborhood are positive and of
the same order of those recently observed in the Milky Way thick disk.
We conclude that: 1) the spatial chemical imprint at the time of disk
formation is not washed out by secular dynamical processes, and 2) the observed
radial gradient may be the dynamical relic of a thick disk originated from a
stellar population showing a positive chemical radial gradient in the inner
regions.Comment: 10 pages, 5 figures, Accepted for publication on Astrophysical
Journal Letter
Covariant density functional theory: The role of the pion
We investigate the role of the pion in Covariant Density Functional Theory.
Starting from conventional Relativistic Mean Field (RMF) theory with a
non-linear coupling of the -meson and without exchange terms we add
pions with a pseudo-vector coupling to the nucleons in relativistic
Hartree-Fock approximation. In order to take into account the change of the
pion field in the nuclear medium the effective coupling constant of the pion is
treated as a free parameter. It is found that the inclusion of the pion to this
sort of density functionals does not destroy the overall description of the
bulk properties by RMF. On the other hand, the non-central contribution of the
pion (tensor coupling) does have effects on single particle energies and on
binding energies of certain nuclei.Comment: 12 pages, 5 figure
Actuarial Senescence In A Dimorphic Bird: Different Rates Of Ageing In Morphs With Discrete Reproductive Strategies
It is often hypothesized that intra-sexual competition accelerates actuarial senescence, or the increase in mortality rates with age. However, an alternative hypothesis is that parental investment is more important to determining senescence rates. We used a unique model system, the white-throated sparrow (Zonotrichia albicollis), to study variation in actuarial senescence. In this species, genetically determined morphs display discrete mating strategies and disassortative pairing, providing an excellent opportunity to test the predictions of the above hypotheses. Compared to tan-striped males, white-striped males are more polygynous and aggressive, and less parental. Tan-striped females receive less parental support, and invest more into parental care than white-striped females, which are also more aggressive. Thus, higher senescence rates in males and white-striped birds would support the intra-sexual competition hypothesis, whereas higher senescence rates in females and tan-striped birds would support the parental investment hypothesis. White-striped males showed the lowest rate of actuarial senescence. Tan-striped females had the highest senescence rate, and tan-striped males and white-striped females showed intermediate, relatively equal rates. Thus, results were inconsistent with sexual selection and competitive strategies increasing senescence rates, and instead indicate that senescence may be accelerated by female-biased parental care, and lessened by sharing of parental duties
- …