1,095 research outputs found
Measuring the 13-mixing angle and the CP phase with neutrino telescopes
The observed excess of high-energy cosmic rays from the Galactic plane in the
energy range \sim 10^18 eV may be naturally explained by neutron primaries
generated in the photo-dissociation of heavy nuclei. In this scenario, neutrons
with lower energy decay before reaching the Earth and produce a detectable flux
in a 1 km^3 neutrino telescope. The initial flavor composition of these
neutrinos, \phi(\bar\nu_e):\phi(\bar\nu_\mu):\phi(\bar\nu_\tau)=1:0:0, offers
the opportunity to perform a combined \bar\nu_\mu/\bar\nu_\tau appearance and
\bar\nu_e disappearance experiment. The observable ratio
\phi(\bar\nu_\mu)/\phi(\bar\nu_e+\bar\nu_\tau) of fluxes arriving on Earth
depends appreciably on the 13-mixing angle \theta_13 and the leptonic CP phase
\delta_CP, opening thus a new experimental avenue to measure these two
quantities.Comment: 4 pages, 2 eps figures. Enlarged discussion, references added.
Matches version to appear in PR
The Galactic magnetic field as spectrograph for ultra-high energy cosmic rays
We study the influence of the regular component of the Galactic magnetic
field (GMF) on the arrival directions of ultra-high energy cosmic rays
(UHECRs). We find that, if the angular resolution of current experiments has to
be fully exploited, deflections in the GMF cannot be neglected even for E=10^20
eV protons, especially for trajectories along the Galactic plane or crossing
the Galactic center region. On the other hand, the GMF could be used as a
spectrograph to discriminate among different source models and/or primaries of
UHECRs, if its structure would be known with sufficient precision. We compare
several GMF models introduced in the literature and discuss for the example of
the AGASA data set how the significance of small-scale clustering or
correlations with given astrophysical sources are affected by the GMF. We point
out that the non-uniform exposure to the extragalactic sky induced by the GMF
should be taken into account estimating the significance of potential
(auto-)correlation signals.Comment: 11 pages, 8 figures; minor corrections, enlarged discussion, contains
an extended review on Galactic magnetic field compared to published version,
to appear in Astroparticle Physic
Model-independent dark matter annihilation bound from the diffuse gamma ray flux
An upper limit on the total annihilation cross section of dark matter (DM)
has recently been derived from the observed atmospheric neutrino background. We
show that comparable bounds are obtained for DM masses around the TeV scale by
observations of the diffuse gamma-ray flux by EGRET, because electroweak
bremsstrahlung leads to non-negligible electromagnetic branching ratios, even
if DM particles only couple to neutrinos at tree level. A better mapping and
the partial resolution of the diffuse gamma-ray background into astrophysical
sources by the GLAST satellite will improve this bound in the near future.Comment: 4 pages revtex, 2 figures; minor changes, references added,
conclusions unchanged; Matches published versio
Revisiting cosmological bounds on radiative neutrino lifetime
Neutrino oscillation experiments and direct bounds on absolute masses
constrain neutrino mass differences to fall into the microwave energy range,
for most of the allowed parameter space. As a consequence of these recent
phenomenological advances, older constraints on radiative neutrino decays based
on diffuse background radiations and assuming strongly hierarchical masses in
the eV range are now outdated. We thus derive new bounds on the radiative
neutrino lifetime using the high precision cosmic microwave background spectral
data collected by the Far Infrared Absolute Spectrophotometer instrument on
board of Cosmic Background Explorer. The lower bound on the lifetime is between
a few x 10^19 s and 5 x 10^20 s, depending on the neutrino mass ordering and on
the absolute mass scale. However, due to phase space limitations, the upper
bound in terms of the effective magnetic moment mediating the decay is not
better than ~ 10^-8 Bohr magnetons. We also comment about possible improvements
of these limits, by means of recent diffuse infrared photon background data. We
compare these bounds with pre-existing limits coming from laboratory or
astrophysical arguments. We emphasize the complementarity of our results with
others available in the literature.Comment: 7 pages, 3 figures. Minor changes in the text, few references added.
Matches the published versio
Spin-wave instabilities in spin-transfer-driven magnetization dynamics
We study the stability of magnetization precessions induced in spin-transfer
devices by the injection of spin-polarized electric currents. Instability
conditions are derived by introducing a generalized, far-from-equilibrium
interpretation of spin-waves. It is shown that instabilities are generated by
distinct groups of magnetostatically coupled spin-waves. Stability diagrams are
constructed as a function of external magnetic field and injected
spin-polarized current. These diagrams show that applying larger fields and
currents has a stabilizing effect on magnetization precessions. Analytical
results are compared with numerical simulations of spin-transfer-driven
magnetization dynamics.Comment: 4 pages, 2 figure
Clustering properties of ultrahigh energy cosmic rays and the search for their astrophysical sources
The arrival directions of ultrahigh energy cosmic rays (UHECRs) may show
anisotropies on all scales, from just above the experimental angular resolution
up to medium scales and dipole anisotropies. We find that a global comparison
of the two-point auto-correlation function of the data with the one of
catalogues of potential sources is a powerful diagnostic tool. In particular,
this method is far less sensitive to unknown deflections in magnetic fields
than cross-correlation studies while keeping a strong discrimination power
among source candidates. We illustrate these advantages by considering ordinary
galaxies, gamma ray bursts and active galactic nuclei as possible sources.
Already the sparse publicly available data suggest that the sources of UHECRs
may be a strongly clustered sub-sample of galaxies or of active galactic
nuclei. We present forecasts for various cases of source distributions which
can be checked soon by the Pierre Auger Observatory.Comment: 11 pages, 8 figures, 4 tables; minor changes, matches published
versio
Role of electroweak bremsstrahlung for indirect dark matter signatures
Interpretations of indirect searches for dark matter (DM) require theoretical predictions for the annihilation or decay rates of DM into stable particles of the standard model. These predictions include usually only final states accessible as lowest order tree-level processes, with electromagnetic bremsstrahlung and the loop-suppressed two gamma-ray line as exceptions. We show that this restriction may lead to severely biased results for DM tailored to produce only leptons in final states and with mass in the TeV range. For such models, unavoidable electroweak bremsstrahlung of Z and W-bosons has a significant influence both on the branching ratio and the spectral shape of the final state particles. We work out the consequences for two situations: First, the idealized case where DM annihilates at tree level with 100% branching ratio into neutrinos. For a given cross section, this leads eventually to “minimal yields” of photons, electrons, positrons, and antiprotons. Second, the case where the only allowed two-body final states are electrons. The latter case is typical of models aimed at fitting cosmic ray e- and e+ data. We find that the multimessenger signatures of such models can be significantly modified with respect to results presented in the literature
Neutrino decay as a possible interpretation to the MiniBooNE observation with unparticle scenario
In a new measurement on neutrino oscillation , the
MiniBooNE Collaboration observes an excess of electron-like events at low
energy and the phenomenon may demand an explanation which obviously is beyond
the oscillation picuture. We propose that heavier neutrino decaying
into a lighter one via the transition process
where denotes any light products, could be a natural mechanism. The
theoretical model we employ here is the unparticle scenario established by
Georgi. We have studied two particular modes \nu_\mu\to \nu_e+\Un and
. Unfortunately, the number coming out from
the computation is too small to explain the observation. Moreover, our results
are consistent with the cosmology constraint on the neutrino lifetime and the
theoretical estimation made by other groups, therefore we can conclude that
even though neutrino decay seems plausible in this case, it indeed cannot be
the source of the peak at lower energy observed by the MiniBooNE collaboration
and there should be other mechanisms responsible for the phenomenon.Comment: 14 pages, conclusions are changed; published version for EPJ
Using BBN in cosmological parameter extraction from CMB: a forecast for Planck
Data from future high-precision Cosmic Microwave Background (CMB)
measurements will be sensitive to the primordial Helium abundance . At the
same time, this parameter can be predicted from Big Bang Nucleosynthesis (BBN)
as a function of the baryon and radiation densities, as well as a neutrino
chemical potential. We suggest to use this information to impose a
self-consistent BBN prior on and determine its impact on parameter
inference from simulated Planck data. We find that this approach can
significantly improve bounds on cosmological parameters compared to an analysis
which treats as a free parameter, if the neutrino chemical potential is
taken to vanish. We demonstrate that fixing the Helium fraction to an arbitrary
value can seriously bias parameter estimates. Under the assumption of
degenerate BBN (i.e., letting the neutrino chemical potential vary), the
BBN prior's constraining power is somewhat weakened, but nevertheless allows us
to constrain with an accuracy that rivals bounds inferred from present
data on light element abundances.Comment: 14 pages, 4 figures; v2: minor changes, matches published versio
- …
