328 research outputs found
High Energy neutrino signals from the Epoch of Reionization
We perform a new estimate of the high energy neutrinos expected from GRBs
associated with the first generation of stars in light of new models and
constraints on the epoch of reionization and a more detailed evaluation of the
neutrino emission yields. We also compare the diffuse high energy neutrino
background from Population III stars with the one from "ordinary stars"
(Population II), as estimated consistently within the same cosmological and
astrophysical assumptions. In disagreement with previous literature, we find
that high energy neutrinos from Population III stars will not be observable
with current or near future neutrino telescopes, falling below both IceCube
sensitivity and atmospheric neutrino background under the most extreme
assumptions for the GRB rate. This rules them out as a viable diagnostic tool
for these still elusive metal-free stars.Comment: 9 pages, 5 figures
Compartmentalized control of Cdk1 drives mitotic spindle assembly
During cell division, dramatic microtubular rearrangements driven by cyclin B-cdk1 (Cdk1) kinase activity mark the onset of mitosis leading to dismantling of the interphase microtubular cytoskeleton and assembly of the mitotic spindle. During interphase, Cdk1 accumulates in an inactive state, phosphorylated at inhibitory sites by Wee1/Myt1 kinases. At mitosis onset, Cdc25 phosphatase dephosphorylates and activates Cdk1. Once activated, Cdk1 clears cytoplasmic microtubules by inhibiting microtubule-stabilizing and growth-promoting microtubule-associated proteins (MAPs). Nevertheless, some of these MAPs are required for spindle microtubule growth and spindle assembly, creating quite a conundrum. We show here that a Cdk1 fraction bound to spindle structures escapes Cdc25 action and remains inhibited by phosphorylation (i-Cdk1) in mitotic human cells. Loss or restoration of i-Cdk1 inhibits or promotes spindle assembly, respectively. Furthermore, polymerizing spindle microtubules foster i-Cdk1 aggregating with Wee1 and excluding Cdc25. Our data reveal that spindle assembly relies on compartmentalized control of Cdk1 activity
The Milky Way as a Kiloparsec-Scale Axionscope
Very high energy gamma-rays are expected to be absorbed by the extragalactic
background light over cosmological distances via the process of
electron-positron pair production. Recent observations of cosmologically
distant gamma-ray emitters by ground based gamma-ray telescopes have, however,
revealed a surprising degree of transparency of the universe to very high
energy photons. One possible mechanism to explain this observation is the
oscillation between photons and axion-like-particles (ALPs). Here we explore
this possibility further, focusing on photon-ALP conversion in the magnetic
fields in and around gamma-ray sources and in the magnetic field of the Milky
Way, where some fraction of the ALP flux is converted back into photons. We
show that this mechanism can be efficient in allowed regions of the ALP
parameter space, as well as in typical configurations of the Galactic Magnetic
Field. As case examples, we consider the spectrum observed from two HESS
sources: 1ES1101-232 at redshift z=0.186 and H 2356-309 at z=0.165. We also
discuss features of this scenario which could be used to distinguish it from
standard or other exotic models.Comment: 7 pages, 4 figures. Matches published versio
Astrophysical limitations to the identification of dark matter: indirect neutrino signals vis-a-vis direct detection recoil rates
A convincing identification of dark matter (DM) particles can probably be
achieved only through a combined analysis of different detections strategies,
which provides an effective way of removing degeneracies in the parameter space
of DM models. In practice, however, this program is made complicated by the
fact that different strategies depend on different physical quantities, or on
the same quantities but in a different way, making the treatment of systematic
errors rather tricky. We discuss here the uncertainties on the recoil rate in
direct detection experiments and on the muon rate induced by neutrinos from
dark matter annihilations in the Sun, and we show that, contrarily to the local
DM density or overall cross section scale, irreducible astrophysical
uncertainties affect the two rates in a different fashion, therefore limiting
our ability to reconstruct the parameters of the dark matter particle. By
varying within their respective errors astrophysical parameters such as the
escape velocity and the velocity dispersion of dark matter particles, we show
that the uncertainty on the relative strength of the neutrino and
direct-detection signal is as large as a factor of two for typical values of
the parameters, but can be even larger in some circumstances.Comment: 12 pages, 3 figures. Improved presentation and Fig.3; clarifications,
references and an appendix added; conclusions unchanged. Matches version
published in PR
PArthENoPE: Public Algorithm Evaluating the Nucleosynthesis of Primordial Elements
We describe a program for computing the abundances of light elements produced
during Big Bang Nucleosynthesis which is publicly available at
http://parthenope.na.infn.it/. Starting from nuclear statistical equilibrium
conditions the program solves the set of coupled ordinary differential
equations, follows the departure from chemical equilibrium of nuclear species,
and determines their asymptotic abundances as function of several input
cosmological parameters as the baryon density, the number of effective
neutrino, the value of cosmological constant and the neutrino chemical
potential. The program requires commercial NAG library routines.Comment: 18 pages, 2 figures. Version accepted by Comp. Phys. Com. The code
(and an updated manual) is publicly available at
http://parthenope.na.infn.it
Magnetization reversal in exchange-spring bilayer system under circularly polarized microwave field
Microwave assisted magnetization reversal are studied in the bulk bilayer
exchange coupled system. We investigate the nonlinear magnetization reversal
dynamics in a perpendicular exchange spring media using Landau-Lifshitz
equation. In the limit of the infinite thickness of the system, the propagation
field leads the reversal of the system. The reduction of the switching field
and the magnetization profile in the extended system are studied numerically.
The possibility to study the dynamics analytically is discussed and an
approximation where two P-modes are coupled by an interaction field is
presented. The ansatz used for the interaction field is validated by comparison
with the numerical results. This approach is shown to be equivalent to two
exchange coupled macrospins
Analysis of Risk Factors of Oral Cancer and Periodontitis from a Sex- and Gender-Related Perspective: Gender Dentistry
Gender-specific medicine studies how sexual biology and gender-related cultural and behavioral differences may influence a person's health and considers the differences in clinical features, prevention, therapies, prognosis, and psycho-social aspects of diseases with different impacts on women and men. The present work summarizes the main differential impact each risk factor for oral cancer and periodontitis has according to biological sex- and gender-oriented differences. It resulted in differences in epidemiology and the weight of various healthy determinants that may influence the incidence and prognosis of oral cancer and periodontitis. It is desirable to change the methodology of scientific studies with a higher focus on the weight that sexual variables may have on the well-being or the probability of getting ill of each person, thus promoting the development and diffusion of personalized gender dentistry
Proteomic peptide scan of porphyromonas gingivalis fima type II for searching potential B-cell epitopes
Purpose. To identify potential antigenic targets for Porphyromonas gingivalis vaccine development. Materials and methods. In the present study, we analyzed the Porphyromonas gingivalis, fimA type II primary amino acid sequence and characterized the similarity to the human proteome at the pentapeptide level. Results. We found that exact peptide-peptide profiling of the fimbrial antigen versus the human proteome shows that only 19 out of 344 fimA type II pentapeptides are uniquely owned by the bacterial protein. Conclusions. The concept that protein immunogenicity is allocated in rare peptide sequences and the search the Porphyromonas gingivalis fimA type II sequence for peptides unique to the bacterial protein and absent in the human host, might be used in new therapeutical approaches as a significant adjunct to current periodontal therapies
Cosmological implications of the KATRIN experiment
The upcoming Karlsruhe Tritium Neutrino (KATRIN) experiment will put
unprecedented constraints on the absolute mass of the electron neutrino,
\mnue. In this paper we investigate how this information on \mnue will
affect our constraints on cosmological parameters. We consider two scenarios;
one where \mnue=0 (i.e., no detection by KATRIN), and one where
\mnue=0.3eV. We find that the constraints on \mnue from KATRIN will affect
estimates of some important cosmological parameters significantly. For example,
the significance of and the inferred value of depend
on the results from the KATRIN experiment.Comment: 13 page
- …