2,263 research outputs found

    Upper limit to ΩB\Omega_B in scalar-tensor gravity theories

    Full text link
    In a previous paper (Serna & Alimi 1996), we have pointed out the existence of some particular scalar-tensor gravity theories able to relax the nucleosynthesis constraint on the cosmic baryonic density. In this paper, we present an exhaustive study of primordial nucleosynthesis in the framework of such theories taking into account the currently adopted observational constraints. We show that a wide class of them allows for a baryonic density very close to that needed for the universe closure. This class of theories converges soon enough towards General Relativity and, hence, is compatible with all solar-system and binary pulsar gravitational tests. In other words, we show that primordial nucleosynthesis does not always impose a very stringent bound on the baryon contribution to the density parameter.Comment: uuencoded tar-file containing 16 pages, latex with 5 figures, accepted for publication in Astrophysical Journal (Part 1

    From ergodic to non-ergodic chaos in Rosenzweig-Porter model

    Full text link
    The Rosenzweig-Porter model is a one-parameter family of random matrices with three different phases: ergodic, extended non-ergodic and localized. We characterize numerically each of these phases and the transitions between them. We focus on several quantities that exhibit non-analytical behaviour and show that they obey the scaling hypothesis. Based on this, we argue that non-ergodic chaotic and ergodic regimes are separated by a continuous phase transition, similarly to the transition between non-ergodic chaotic and localized phases.Comment: 12 page

    The Precision Determination of Invisible-Particle Masses at the LHC

    Full text link
    We develop techniques to determine the mass scale of invisible particles pair-produced at hadron colliders. We employ the constrained mass variable m_2C, which provides an event-by-event lower-bound to the mass scale given a mass difference. We complement this variable with a new variable m_2C,UB which provides an additional upper bound to the mass scale, and demonstrate its utility with a realistic case study of a supersymmetry model. These variables together effectively quantify the `kink' in the function Max m_T2 which has been proposed as a mass-determination technique for collider-produced dark matter. An important advantage of the m_2C method is that it does not rely simply on the position at the endpoint, but it uses the additional information contained in events which lie far from the endpoint. We found the mass by comparing the HERWIG generated m_2C distribution to ideal distributions for different masses. We find that for the case studied, with 100 fb^-1 of integrated luminosity (about 400 signal events), the invisible particle's mass can be measured to a precision of 4.1 GeV. We conclude that this technique's precision and accuracy is as good as, if not better than, the best known techniques for invisible-particle mass-determination at hadron colliders.Comment: 20 pages, 11 figures, minor correction

    La dignidad humana en la constitución europea

    Get PDF

    En defensa de C.S. Nino. Algunas reflexiones sobre el iusnaturalismo

    Get PDF

    Modernidad, posmodernidad y derecho natural: un iusnaturalismo posible

    Get PDF

    Sobre las respuestas al positivismo jurídico

    Get PDF

    Teoría del derecho y filosofía del derecho

    Get PDF

    Los sistemas electorales españoles: Evaluación y propuestas de reforma

    Get PDF
    corecore