8 research outputs found

    Towards an experimental proof of the magnonic Aharonov-Casher effect

    Full text link
    Controlling the phase and amplitude of spin waves in magnetic insulators with an electric field opens the way to fast logic circuits with ultra-low power consumption. One way to achieve such control is to manipulate the magnetization of the medium via magnetoelectric effects. In experiments with magnetostatic spin waves in an yttrium iron garnet film, we have obtained the first evidence of a theoretically predicted phenomenon: The change of the spin-wave phase due to the magnonic Aharonov-Casher effect-the geometric accumulation of the magnon phase as these quasiparticles propagate through an electric field region

    Dipolar skyrmions and antiskyrmions of arbitrary topological charge at room temperature

    Get PDF
    Magnetic skyrmions are localized, stable topological magnetic textures that can move and interact with each other like ordinary particles when an external stimulus is applied. The efficient control of the motion of spin textures using spin-polarized currents opened an opportunity for skyrmionic devices such as racetrack memory and neuromorphic or reservoir computing. The coexistence of skyrmions with high topological charge in the same system promises further possibilities for efficient technological applications. In this work, we directly observe dipolar skyrmions and antiskyrmions with arbitrary topological charge in Co/Ni multilayers at room temperature. We explore the dipolar-stabilized spin objects with topological charges of up to 10 and characterize their nucleation process, their energy dependence on the topological charge and the effect of the material parameters on their stability. Furthermore, our micromagnetic simulations demonstrate spin-transfer-induced motion of these spin objects, which is important for their potential device application

    Propagating spin-wave spectroscopy in nanometer-thick YIG films at millikelvin temperatures

    Full text link
    Performing propagating spin-wave spectroscopy of thin films at millikelvin temperatures is the next step towards the realisation of large-scale integrated magnonic circuits for quantum applications. Here we demonstrate spin-wave propagation in a 100nm100\,\mathrm{nm}-thick yttrium-iron-garnet film at the temperatures down to 45mK45 \,\mathrm{mK}, using stripline nanoantennas deposited on YIG surface for the electrical excitation and detection. The clear transmission characteristics over the distance of 10μm10\,\mu \mathrm{m} are measured and the subtracted spin-wave group velocity and the YIG saturation magnetisation agree well with the theoretical values. We show that the gadolinium-gallium-garnet substrate influences the spin-wave propagation characteristics only for the applied magnetic fields beyond 75mT75\,\mathrm{mT}, originating from a GGG magnetisation up to 47kA/m47 \,\mathrm{kA/m} at 45mK45 \,\mathrm{mK}. Our results show that the developed fabrication and measurement methodologies enable the realisation of integrated magnonic quantum nanotechnologies at millikelvin temperatures.Comment: 6 pages, 5 figure

    Stimulated amplification of propagating spin waves

    Full text link
    Spin-wave amplification techniques are key to the realization of magnon-based computing concepts. We introduce a novel mechanism to amplify spin waves in magnonic nanostructures. Using the technique of rapid cooling, we create a non-equilibrium state in excess of high-energy magnons and demonstrate the stimulated amplification of an externally seeded, propagating spin wave. Using an extended kinetic model, we qualitatively show that the amplification is mediated by an effective energy flux of high energy magnons into the low energy propagating mode, driven by a non-equilibrium magnon distribution

    Control of the Bose-Einstein Condensation of Magnons by the Spin-Hall Effect

    Full text link
    Previously, it has been shown that rapid cooling of yttrium-iron-garnet (YIG)/platinum (Pt) nano structures, preheated by an electric current sent through the Pt layer, leads to overpopulation of a magnon gas and to subsequent formation of a Bose-Einstein condensate (BEC) of magnons. The spin Hall effect (SHE), which creates a spin-polarized current in the Pt layer, can inject or annihilate magnons depending on the electric current and applied field orientations. Here we demonstrate that the injection or annihilation of magnons via the SHE can prevent or promote the formation of a rapid cooling induced magnon BEC. Depending on the current polarity, a change in the BEC threshold of -8% and +6% was detected. These findings demonstrate a new method to control macroscopic quantum states, paving the way for their application in spintronic devices

    Stabilization of a nonlinear bullet coexisting with a Bose-Einstein condensate in a rapidly cooled magnonic system driven by a spin-orbit torque

    Full text link
    We have recently shown that injection of magnons into a magnetic dielectric via the spin-orbit torque (SOT) effect in the adjacent layer of a heavy metal subjected to the action of short (0.1 μ\mus) current pulses allows for control of a magnon Bose-Einstein Condensate (BEC). Here, the BEC was formed in the process of rapid cooling (RC), when the electric current heating the sample is abruptly terminated. In the present study, we show that the application of a longer (1.0 μ\mus) electric current pulse triggers the formation of a nonlinear localized magnonic bullet below the linear magnon spectrum. After pulse termination, the magnon BEC, as before, is formed at the bottom of the linear spectrum, but the nonlinear bullet continues to exist, stabilized for additional 30 ns by the same process of RC-induced magnon condensation. Our results suggest that a stimulated condensation of excess magnons to all highly populated magnonic states occurs

    Low-Damping Spin-Wave Transmission in YIG/Pt-Interfaced Structures

    No full text
    Magnetic heterostructures consisting of single-crystal yttrium iron garnet (YIG) films coated with platinum are widely used in spin-wave experiments related to spintronic phenomena such as the spin-transfer-torque, spin-Hall, and spin-Seebeck effects. However, spin waves in YIG/Pt bilayers experience much stronger attenuation than in bare YIG films. For micrometer-thick YIG films, this effect is caused by microwave eddy currents in the Pt layer. This paper reports that by employing an excitation configuration in which the YIG film faces the metal plate of the microstrip antenna structure, the eddy currents in Pt are shunted and the transmission of the Damon–Eschbach surface spin wave is greatly improved. The reduction in spin-wave attenuation persists even when the Pt coating is separated from the ground plate by a thin dielectric layer. This makes the proposed excitation configuration suitable for injection of an electric current into the Pt layer and thus for application in spintronics devices. The theoretical analysis carried out within the framework of the electrodynamic approach reveals how the platinum nanolayer and the nearby highly conductive metal plate affect the group velocity and the lifetime of the Damon–Eshbach surface wave and how these two wavelength-dependent quantities determine the transmission characteristics of the spin-wave device
    corecore