9 research outputs found

    Phonon Decoherence of a Double Quantum Dot Charge Qubit

    Full text link
    We study decoherence of a quantum dot charge qubit due to coupling to piezoelectric acoustic phonons in the Born-Markov approximation. After including appropriate form factors, we find that phonon decoherence rates are one to two orders of magnitude weaker than was previously predicted. We calculate the dependence of the Q-factor on lattice temperature, quantum dot size, and interdot coupling. Our results suggest that mechanisms other than phonon decoherence play a more significant role in current experimental setups.Comment: RevTex, 7 pages, 5 figures. v2: appendix added, more details provided. Accepted for publication in PR

    Coulomb Blockade Oscillations of Conductance at Finite Energy Level Spacing in a Quantum Dot

    Full text link
    We find an analytical expression for the conductance of a single electron transistor in the regime when temperature, level spacing, and charging energy of a grain are all of the same order. We consider the model of equidistant energy levels in a grain in the sequential tunneling approximation. In the case of spinless electrons our theory describes transport through a dot in the quantum Hall regime. In the case of spin-1/2 electrons we analyze the line shape of a peak, shift in the position of the peak's maximum as a function of temperature, and the values of the conductance in the odd and even valleys.Comment: RevTex, 13 pages, 13 figure

    Spin Qubits in Multi-Electron Quantum Dots

    Full text link
    We study the effect of mesoscopic fluctuations on the magnitude of errors that can occur in exchange operations on quantum dot spin-qubits. Mid-size double quantum dots, with an odd number of electrons in the range of a few tens in each dot, are investigated through the constant interaction model using realistic parameters. It is found that the constraint of having short pulses and small errors implies keeping accurate control, at the few percent level, of several electrode voltages. In practice, the number of independent parameters per dot that one should tune depends on the configuration and ranges from one to four.Comment: RevTex, 6 pages, 5 figures. v3: two figures added, more details provided. Accepted for publication in PR

    Coulomb Blockade Peak Spacings: Interplay of Spin and Dot-Lead Coupling

    Full text link
    For Coulomb blockade peaks in the linear conductance of a quantum dot, we study the correction to the spacing between the peaks due to dot-lead coupling. This coupling can affect measurements in which Coulomb blockade phenomena are used as a tool to probe the energy level structure of quantum dots. The electron-electron interactions in the quantum dot are described by the constant exchange and interaction (CEI) model while the single-particle properties are described by random matrix theory. We find analytic expressions for both the average and rms mesoscopic fluctuation of the correction. For a realistic value of the exchange interaction constant J_s, the ensemble average correction to the peak spacing is two to three times smaller than that at J_s = 0. As a function of J_s, the average correction to the peak spacing for an even valley decreases monotonically, nonetheless staying positive. The rms fluctuation is of the same order as the average and weakly depends on J_s. For a small fraction of quantum dots in the ensemble, therefore, the correction to the peak spacing for the even valley is negative. The correction to the spacing in the odd valleys is opposite in sign to that in the even valleys and equal in magnitude. These results are robust with respect to the choice of the random matrix ensemble or change in parameters such as charging energy, mean level spacing, or temperature.Comment: RevTex, 11 pages, 9 figures. v2: Conclusions section expanded. Accepted for publication in PR

    <title>Phonon decoherence in quantum dot qubits</title>

    No full text
    The spin of an electron confined into a lateral semiconductor quantum dot has been proposed as a possible physical realization of a qubit. While the spin has the advantage of large decoherence times, operations with more than one qubit will necessarily involve orbital degrees of freedom, namely, charge, which is much more prone to decoherence. There are also alternative quantum dot qubit proposals that are entirely based on charge. We have used a realistic model to quantify the limitations imposed by acoustic phonons on the operation of quantum dot-based qubits. Our treatment includes essential aspects of the setup geometry, wave function profile and materials characteristics. The time dependence of the qubit density matrix is the presence of a phonon bath solved within the Born-Markov approximation. We find that the inclusion of geometric form factors makes the phonon-induced decoherence rates in double dot charge qubits nearly one order of magnitude lower than estimates previously in the literature. Moreover, our theoretical prediction for the quality factor of coherent charge oscillations based on phonon decoherence are higher than the values recently observed experimentally. This allows us to conclude that phonons are not the primary source of decoherence in double quantum dot qubits

    Phonon Decoherence In Quantum Dot Qubits

    No full text
    The spin of an electron confined into a lateral semiconductor quantum dot has been proposed as a possible physical realization of a qubit. While the spin has the advantage of large decoherence times, operations with more than one qubit will necessarily involve orbital degrees of freedom, namely, charge, which is much more prone to decoherence. There are also alternative quantum dot qubit proposals that are entirely based on charge. We have used a realistic model to quantify the limitations imposed by acoustic phonons on the operation of quantum dot-based qubits. Our treatment includes essential aspects of the setup geometry, wave function profile and materials characteristics. The time dependence of the qubit density matrix is the presence of a phonon bath solved within the Born-Markov approximation. We find that the inclusion of geometric form factors makes the phonon-induced decoherence rates in double dot charge qubits nearly one order of magnitude lower than estimates previously in the literature. Moreover, our theoretical prediction for the quality factor of coherent charge oscillations based on phonon decoherence are higher than the values recently observed experimentally. This allows us to conclude that phonons are not the primary source of decoherence in double quantum dot qubits

    A Review of the Magnetic Forces in the CMS Magnet Yoke

    No full text
    A summary of the magnetic forces, acting on various ferromagnetic parts of the flux - return yoke of the CMS magnetic system is presented. The latest information about the parameters of the system has been taken into account: coil revision 5/98, yoke revision 6/98, hadronic forward calorimeter revision 6/98. The Vector Fields TOSCA code and the modified CERN POISCR code were used for two - and three - dimensional finite - element calculations of the magnetic field. The forces on ferromagnetic elements were computed using the Maxwell surface integral method. The obtained results are compared with the estimates of the magnetic forces presented in the Magnet Technical Design Report
    corecore