9 research outputs found

    Non-linear dimensionality reduction of signaling networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systems wide modeling and analysis of signaling networks is essential for understanding complex cellular behaviors, such as the biphasic responses to different combinations of cytokines and growth factors. For example, tumor necrosis factor (TNF) can act as a proapoptotic or prosurvival factor depending on its concentration, the current state of signaling network and the presence of other cytokines. To understand combinatorial regulation in such systems, new computational approaches are required that can take into account non-linear interactions in signaling networks and provide tools for clustering, visualization and predictive modeling.</p> <p>Results</p> <p>Here we extended and applied an unsupervised non-linear dimensionality reduction approach, Isomap, to find clusters of similar treatment conditions in two cell signaling networks: (I) apoptosis signaling network in human epithelial cancer cells treated with different combinations of TNF, epidermal growth factor (EGF) and insulin and (II) combination of signal transduction pathways stimulated by 21 different ligands based on AfCS double ligand screen data. For the analysis of the apoptosis signaling network we used the Cytokine compendium dataset where activity and concentration of 19 intracellular signaling molecules were measured to characterise apoptotic response to TNF, EGF and insulin. By projecting the original 19-dimensional space of intracellular signals into a low-dimensional space, Isomap was able to reconstruct clusters corresponding to different cytokine treatments that were identified with graph-based clustering. In comparison, Principal Component Analysis (PCA) and Partial Least Squares – Discriminant analysis (PLS-DA) were unable to find biologically meaningful clusters. We also showed that by using Isomap components for supervised classification with k-nearest neighbor (k-NN) and quadratic discriminant analysis (QDA), apoptosis intensity can be predicted for different combinations of TNF, EGF and insulin. Prediction accuracy was highest when early activation time points in the apoptosis signaling network were used to predict apoptosis rates at later time points. Extended Isomap also outperformed PCA on the AfCS double ligand screen data. Isomap identified more functionally coherent clusters than PCA and captured more information in the first two-components. The Isomap projection performs slightly worse when more signaling networks are analyzed; suggesting that the mapping function between cues and responses becomes increasingly non-linear when large signaling pathways are considered.</p> <p>Conclusion</p> <p>We developed and applied extended Isomap approach for the analysis of cell signaling networks. Potential biological applications of this method include characterization, visualization and clustering of different treatment conditions (i.e. low and high doses of TNF) in terms of changes in intracellular signaling they induce.</p

    Whole-genome sequencing provides new insights into the clonal architecture of Barrett's esophagus and esophageal adenocarcinoma.

    Get PDF
    The molecular genetic relationship between esophageal adenocarcinoma (EAC) and its precursor lesion, Barrett's esophagus, is poorly understood. Using whole-genome sequencing on 23 paired Barrett's esophagus and EAC samples, together with one in-depth Barrett's esophagus case study sampled over time and space, we have provided the following new insights: (i) Barrett's esophagus is polyclonal and highly mutated even in the absence of dysplasia; (ii) when cancer develops, copy number increases and heterogeneity persists such that the spectrum of mutations often shows surprisingly little overlap between EAC and adjacent Barrett's esophagus; and (iii) despite differences in specific coding mutations, the mutational context suggests a common causative insult underlying these two conditions. From a clinical perspective, the histopathological assessment of dysplasia appears to be a poor reflection of the molecular disarray within the Barrett's epithelium, and a molecular Cytosponge technique overcomes sampling bias and has the capacity to reflect the entire clonal architecture

    Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer

    No full text
    The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations

    Whole-genome sequencing provides new insights into the clonal architecture of Barrett's esophagus and esophageal adenocarcinoma

    No full text
    The molecular genetic relationship between esophageal adenocarcinoma (EAC) and its precursor lesion, Barrett's esophagus, is poorly understood. Using whole-genome sequencing on 23 paired Barrett's esophagus and EAC samples, together with one in-depth Barrett's esophagus case study sampled over time and space, we have provided the following new insights: (i) Barrett's esophagus is polyclonal and highly mutated even in the absence of dysplasia; (ii) when cancer develops, copy number increases and heterogeneity persists such that the spectrum of mutations often shows surprisingly little overlap between EAC and adjacent Barrett's esophagus; and (iii) despite differences in specific coding mutations, the mutational context suggests a common causative insult underlying these two conditions. From a clinical perspective, the histopathological assessment of dysplasia appears to be a poor reflection of the molecular disarray within the Barrett's epithelium, and a molecular Cytosponge technique overcomes sampling bias and has the capacity to reflect the entire clonal architecture.</p
    corecore