32 research outputs found
Distinct roles of Shh and Fgf signaling in regulating cell proliferation during zebrafish pectoral fin development
<p>Abstract</p> <p>Background</p> <p>Cell proliferation in multicellular organisms must be coordinated with pattern formation. The major signaling pathways directing pattern formation in the vertebrate limb are well characterized, and we have therefore chosen this organ to examine the interaction between proliferation and patterning. Two important signals for limb development are members of the Hedgehog (Hh) and Fibroblast Growth Factor (Fgf) families of secreted signaling proteins. Sonic hedgehog (Shh) directs pattern formation along the anterior/posterior axis of the limb, whereas several Fgfs in combination direct pattern formation along the proximal/distal axis of the limb.</p> <p>Results</p> <p>We used the genetic and pharmacological amenability of the zebrafish model system to dissect the relative importance of Shh and Fgf signaling in regulating proliferation during development of the pectoral fin buds. In zebrafish mutants disrupting the <it>shh </it>gene, proliferation in the pectoral fin buds is initially normal, but later is strongly reduced. Correlating with this reduction, Fgf signaling is normal at early stages, but is later lost in <it>shh </it>mutants. Furthermore, pharmacological inhibition of Hh signaling for short periods has little effect on either Fgf signaling, or on expression of G1- and S-phase cell-cycle genes, whereas long periods of inhibition lead to the downregulation of both. In contrast, even short periods of pharmacological inhibition of Fgf signaling lead to strong disruption of proliferation in the fin buds, without affecting Shh signaling. To directly test the ability of Fgf signaling to regulate proliferation in the absence of Shh signaling, we implanted beads soaked with Fgf protein into <it>shh </it>mutant fin buds. We find that Fgf-soaked beads rescue proliferation in the pectoral find buds of <it>shh </it>mutants, indicating that Fgf signaling is sufficient to direct proliferation in zebrafish fin buds in the absence of Shh.</p> <p>Conclusion</p> <p>Previous studies have shown that both Shh and Fgf signaling are crucial for outgrowth of the vertebrate limb. The results presented here show that the role of Shh in this process is indirect, and is mediated by its effect on Fgf signaling. By contrast, the activity of the Fgf pathway affects proliferation directly and independently of its effect on Shh. These results show that Fgf signaling is of primary importance in directing outgrowth of the limb bud, and clarify the role of the Shh-Fgf feedback loop in regulating proliferation.</p
Zebrafish models of inflammation in hematopoietic development and disease
Zebrafish offer an excellent tool for studying the vertebrate hematopoietic system thanks to a highly conserved and rapidly developing hematopoietic program, genetic amenability, optical transparency, and experimental accessibility. Zebrafish studies have contributed to our understanding of hematopoiesis, a complex process regulated by signaling cues, inflammation being crucial among them. Hematopoietic stem cells (HSCs) are multipotent cells producing all the functional blood cells, including immune cells. HSCs respond to inflammation during infection and malignancy by proliferating and producing the blood cells in demand for a specific scenario. We first focus on how inflammation plays a crucial part in steady-state HSC development and describe the critical role of the inflammasome complex in regulating HSC expansion and balanced lineage production. Next, we review zebrafish studies of inflammatory innate immune mechanisms focusing on interferon signaling and the downstream JAK-STAT pathway. We also highlight insights gained from zebrafish models harbouring genetic perturbations in the role of inflammation in hematopoietic disorders such as bone marrow failure, myelodysplastic syndrome, and myeloid leukemia. Indeed, inflammation has been recently identified as a potential driver of clonal hematopoiesis and leukemogenesis, where cells acquire somatic mutations that provide a proliferative advantage in the presence of inflammation. Important insights in this area come from mutant zebrafish studies showing that hematopoietic differentiation can be compromised by epigenetic dysregulation and the aberrant induction of signaling pathways
A transgenic zebrafish model expressing KIT-D816V recapitulates features of aggressive systemic mastocytosis
Summary: Systemic mastocytosis (SM) is a rare myeloproliferative disease without curative therapy. Despite clinical variability, the majority of patients harbour a KIT-D816V mutation, but efforts to inhibit mutant KIT with tyrosine kinase inhibitors have been unsatisfactory, indicating a need for new preclinical approaches to identify alternative targets and novel therapies in this disease. Murine models to date have been limited and do not fully recapitulate the most aggressive forms of SM. We describe the generation of a transgenic zebrafish model expressing the human KIT-D816V mutation. Adult fish demonstrate a myeloproliferative disease phenotype, including features of aggressive SM in haematopoeitic tissues and high expression levels of endopeptidases, consistent with SM patients. Transgenic embryos demonstrate a cell-cycle phenotype with corresponding expression changes in genes associated with DNA maintenance and repair, such as reduced dnmt1. In addition, epcam was consistently downregulated in both transgenic adults and embryos. Decreased embryonic epcam expression was associated with reduced neuromast numbers, providing a robust in vivo phenotypic readout for chemical screening in KIT-D816V-induced disease. This study represents the first zebrafish model of a mast cell disease with an aggressive adult phenotype and embryonic markers that could be exploited to screen for novel agents in SM
Cardiac Electrophysiological Effects of Light-Activated Chloride Channels
During the last decade, optogenetics has emerged as a paradigm-shifting technique to monitor and steer the behavior of specific cell types in excitable tissues, including the heart. Activation of cation-conducting channelrhodopsins (ChR) leads to membrane depolarization, allowing one to effectively trigger action potentials (AP) in cardiomyocytes. In contrast, the quest for optogenetic tools for hyperpolarization-induced inhibition of AP generation has remained challenging. The green-light activated ChR from Guillardia theta (GtACR1) mediates Cl−-driven photocurrents that have been shown to silence AP generation in different types of neurons. It has been suggested, therefore, to be a suitable tool for inhibition of cardiomyocyte activity. Using single-cell electrophysiological recordings and contraction tracking, as well as intracellular microelectrode recordings and in vivo optical recordings of whole hearts, we find that GtACR1 activation by prolonged illumination arrests cardiac cells in a depolarized state, thus inhibiting re-excitation. In line with this, GtACR1 activation by transient light pulses elicits AP in rabbit isolated cardiomyocytes and in spontaneously beating intact hearts of zebrafish. Our results show that GtACR1 inhibition of AP generation is caused by cell depolarization. While this does not address the need for optogenetic silencing through physiological means (i.e., hyperpolarization), GtACR1 is a potentially attractive tool for activating cardiomyocytes by transient light-induced depolarization
In the Absence of Sonic Hedgehog, p53 Induces Apoptosis and Inhibits Retinal Cell Proliferation, Cell-Cycle Exit and Differentiation in Zebrafish
Background: Sonic hedgehog (Shh) signaling regulates cell proliferation during vertebrate development via induction of cell-cycle regulator gene expression or activation of other signalling pathways, prevents cell death by an as yet unclear mechanism and is required for differentiation of retinal cell types. Thus, an unsolved question is how the same signalling molecule can regulate such distinct cell processes as proliferation, cell survival and differentiation. Methodology/Principal Findings: Analysis of the zebrafish shh 2/2 mutant revealed that in this context p53 mediates elevated apoptosis during nervous system and retina development and interferes with retinal proliferation and differentiation. While in shh 2/2 mutants there is activation of p53 target genes and p53-mediated apoptosis, an increase in Hedgehog (Hh) signalling by over-expression of dominant-negative Protein Kinase A strongly decreased p53 target gene expression and apoptosis levels in shh 2/2 mutants. Using a novel p53 reporter transgene, I confirm that p53 is active in tissues that require Shh for cell survival. Proliferation assays revealed that loss of p53 can rescue normal cell-cycle exit and the mitotic indices in the shh 2/2 mutant retina at 24, 36 and 48 hpf. Moreover, generation of amacrine cells and photoreceptors was strongly enhanced in the double p53 2/2 shh 2/2 mutant retina suggesting the effect of p53 on retinal differentiation. Conclusions: Loss of Shh signalling leads to the p53-dependent apoptosis in the developing nervous system and retina
A rapid and effective method for screening, sequencing and reporter verification of engineered frameshift mutations in zebrafish
Clustered regularly interspaced palindromic repeats (CRISPR)/Cas-based adaptive immunity against pathogens in bacteria has been adapted for genome editing and applied in zebrafish (Danio rerio) to generate frameshift mutations in protein-coding genes. Although there are methods to detect, quantify and sequence CRISPR/Cas9-induced mutations, identifying mutations in F1 heterozygous fish remains challenging. Additionally, sequencing a mutation and assuming that it causes a frameshift does not prove causality because of possible alternative translation start sites and potential effects of mutations on splicing. This problem is compounded by the relatively few antibodies available for zebrafish proteins, limiting validation at the protein level. To address these issues, we developed a detailed protocol to screen F1 mutation carriers, and clone and sequence identified mutations. In order to verify that mutations actually cause frameshifts, we created a fluorescent reporter system that can detect frameshift efficiency based on the cloning of wild-type and mutant cDNA fragments and their expression levels. As proof of principle, we applied this strategy to three CRISPR/Cas9-induced mutations in pycr1a, chd7 and hace1 genes. An insertion of seven nucleotides in pycr1a resulted in the first reported observation of exon skipping by CRISPR/Cas9-induced mutations in zebrafish. However, of these three mutant genes, the fluorescent reporter revealed effective frameshifting exclusively in the case of a two-nucleotide deletion in chd7, suggesting activity of alternative translation sites in the other two mutants even though pycr1a exon-skipping deletion is likely to be deleterious. This article provides a protocol for characterizing frameshift mutations in zebrafish, and highlights the importance of checking mutations at the mRNA level and verifying their effects on translation by fluorescent reporters when antibody detection of protein loss is not possible