23 research outputs found

    Stable and unstable cadherin dimers: mechanisms of formation and roles in cell adhesion

    Get PDF
    Numerous attempts to elucidate the strength of cadherin dimerization that mediates intercellular adhesion have produced controversial and inconclusive results. To clarify this issue, we compared E-cadherin dimerization on the surface of living cells with how the same process unfolds on agarose beads. In both cases, dimerization was monitored by the same site-specific cross-linking assay, greatly simplifying data interpretation. We showed that on the agarose surface under physiological conditions, E-cadherin produced a weak dimer that immediately dissociated after the depletion of calcium ions. However, either at pH 5 or in the presence of cadmium ions, E-cadherin produced a strong dimer that was unable to dissociate upon calcium depletion. Both types of dimers were W156-dependent. Remarkably, only the strong dimer was found on the surface of living cells. We also showed that the intracellular cadherin region, the clustering of which through catenins had been proposed as stabilizer of weak intercadherin interactions, was not needed, in fact, for cadherin junction assembly. Taken together, our data present convincing evidence that cadherin adhesion is based on high-affinity cadherin–cadherin interactions

    Adhesive and Lateral E-Cadherin Dimers Are Mediated by the Same Interface

    Get PDF
    E-cadherin is a transmembrane protein that mediates Ca(2+)-dependent cell-cell adhesion. To study cadherin-cadherin interactions that may underlie the adhesive process, a recombinant E-cadherin lacking free sulfhydryl groups and its mutants with novel cysteines were expressed in epithelial A-431 cells. These cysteine mutants, designed according to various structural models of cadherin dimers, were constructed to reveal cadherin dimerization by the bifunctional sulfhydryl-specific cross-linker BM[PE0]3. Cross-linking experiments with the mutants containing a cysteine at strand B of their EC1 domains did show cadherin dimerization. By their properties these dimers correspond to those which have been characterized by coimmunoprecipitation assay. Under standard culture conditions the adhesive dimer is a dominant form. Calcium depletion dissociates adhesive dimers and promotes the formation of lateral dimers. Our data show that both dimers are mediated by the amino-terminal cadherin domain. Furthermore, the interfaces involved in both adhesive and lateral dimerization appear to be the same. The coexistence of the structurally identical adhesive and lateral dimers suggests some flexibility of the extracellular cadherin region

    Spontaneous assembly and active disassembly balance adherens junction homeostasis

    No full text
    The homeostasis of adherens junctions was studied using E-cadherin and its two mutants tagged by the photoconvertible protein Dendra2 in epithelial A-431 cells and in CHO cells lacking endogenous cadherin. The first mutant contained point mutations of two elements, Lys738 and the dileucine motif that suppressed cadherin endocytosis. The second mutant contained, in addition, an extensive truncation that uncoupled the mutant from β-catenin and p120. Surprisingly, the intact cadherin and its truncated mutant were recruited into the junctions with identical kinetics. The full-size cadherin was actively removed from the junctions by a process that was unaffected by the inactivation of its endocytic elements. The cadherin’s apparent half-residence time in the junction was about 2 min. Cadherin clusters made of the truncated mutant exhibited much slower but ATP-independent junctional turnover. Taken together, our experiments showed that adherens junction homeostasis consists of three distinctive steps: cadherin spontaneous recruitment, its lateral catenin-dependent association, and its active release from the resulting clusters. The latter process, whose mechanism is not clear, may play an important role in various kinds of normal and abnormal morphogenesis

    Dynamic Interplay between Adhesive and Lateral E-Cadherin Dimers

    Get PDF
    E-cadherin, an adhesive transmembrane protein of epithelial adherens junctions, forms two types of detergent-resistant dimers: adhesive dimers consisting of cadherin molecules derived from two neighboring cells and lateral dimers incorporating cadherins of the same cell. Both dimers depend on the integrity of the same residue, Trp(156). While the relative amounts of these complexes are not certain, we show here that in epithelial A-431 cells, adhesive dimers may be a prevalent form. Inactivation of the calcium-binding sites, located between successive cadherin ectodomains, drastically reduced the amount of adhesive dimers and concomitantly increased the amount of lateral dimers. A similar interdependence of adhesive and lateral dimers was observed in digitonin-permeabilized cells. In these cells, adhesive dimers immediately disassembled after lowering the Ca(2+) concentration below 0.1 mM. The disappearance of adhesive dimers was counterbalanced by an increase in Trp(156)-dependent lateral dimers. Increasing the calcium concentration to a normal level rapidly restored the original balance between adhesive and lateral dimers. We also present evidence that E-cadherin dimers in vivo have a short lifetime. These observations suggest that cadherin-mediated adhesion is based on the dynamic cycling of E-cadherin between monomeric and adhesive dimer states

    Special Program of Differentiation Expressed in Keratinocytes of Human Haarscheiben: An Analysis of Individual Cytokeratin Polypeptides

    Get PDF
    Human haarscheiben, epidermal Merkel cell-rich sensory organs of hairy skin, were studied for the expression of various cytokeratin (CK) polypeptides and other epithelial and neuronal differentiation markers by applying immunoperoxidase and immunofluorescence microscopy to frozen sections and by two-dimensional gel electrophoresis. The basal clusters of Merkel cells were specifically detected by antibodies against CK 20. Haarscheiben keratinocytes were unique mainly by the prominent expression of CK 17 in the lower and middle layers. Further differences as compared to keratinocytes of usual epidermis included the enlargement of the basal compartment, characterized by the expression of CK 5 and the absence of the maturation-associated CKs 1/10/11, and the reduction of CK 15, which is a constituent of normal basal cells. Using CK 17 as a highly sensitive Haarscheibe marker in skin tissue sections, variabilities in the spatial relationship of the haarscheibe and the corresponding hair follicle were recorded. The results show that haarscheibe keratinocytes express a special program of differentiation that may be important for optimal stimulus perception. Immunohistochemical stainings for CK 17 will facilitate further studies on the distribution and biology of haarscheibe
    corecore