19 research outputs found

    Phase Transformations, Magnetic Susceptibility and NEXAFS-Spectra of Cobalt-Doped Solid Solutions of Bismuth Orthoniobate

    Get PDF
    Методами магнитной восприимчивости и NEXAFS-спектроскопии исследовано электронное состояние и характер обменных взаимодействий атомов кобальта в твердых растворах BiNb1-xСoxO4-δ триклинной и орторомбической модификаций. Для определения электронного состояния атомов кобальта исследованы твердые растворы и оксиды кобальта СoO, Co3O4 методом NEXAFS-спектроскопии. По данным рентгеновской спектроскопии и магнитной восприимчивости, атомы кобальта в твердых растворах находятся в зарядовом состоянии Co(II) и Co(III) в форме мономеров и обменносвязанных кластеров преимущественно с антиферромагнитным типом обмена. На примере кобальтсодержащих твердых растворов подтверждена обратимость фазового превращения α↔β-BiNbO4The electron state and the nature of the exchange interactions of cobalt atoms in BiNb1-xСoxO4-δ solid solutions of triclinic and orthorhombic modifications were studied using the magnetic susceptibility and NEXAFS-spectroscopy. In order to determine the electronic state of cobalt atoms, the solid solutions and oxides of cobalt CoO, Co3O4 were studied by NEXAFS-spectroscopy. The X-ray spectroscopy and the study of the magnetic susceptibility of the solid solutions revealed the presence of the monomers and exchange-related clusters of cobalt with the Co(II) and Co(III) charge states characterized mostly by the antiferromagnetic type of exchange. The cobalt containing solid solutions allowed us to confirm the reversibility of the α↔β-BiNbO4 phase transformatio

    Effect of Fe-Doping on Thermal Expansion and Stability of Bismuth Magnesium Tantalate Pyrochlorere

    No full text
    A continuous series of solid solutions (Bi1.5Mg0.75−xFexTa1.5O7±Δ (x = 0–0.75)) with the pyrochlore structure were synthesized with the solid-phase method. It was shown that iron, like magnesium, is concentrated in the structure in the octahedral position of tantalum. Doping with iron atoms led to an increase in the upper limit of the thermal stability interval of magnesium-containing pyrochlore from 1050 °C (x = 0) up to a temperature of 1140 °C (x = 1). The unit cell constant a and thermal expansion coefficient (TEC) increase uniformly slightly from 10.5018 Å up to 10.5761 Å and from 3.6 up to 9.3 × 10−6 °C−1 in the temperature range 30–1100 °C. The effect of iron(III) ions on the thermal stability and thermal expansion of solid solutions was revealed. It has been established that the thermal stability of iron-containing solid solutions correlates with the unit cell parameter, and the lower the parameter, the more stable the compound. The TEC value, on the contrary, is inversely proportional to the cell constant

    The Structure and Chemical Composition of the Cr and Fe Pyrolytic Coatings on the MWCNTs’ Surface According to NEXAFS and XPS Spectroscopy

    No full text
    The paper is devoted to the structure and properties of the composite material based on multi-walled carbon nanotubes (MWCNTs) covered with pyrolytic iron and chromium. Fe/MWCNTs and Cr/MWCNTs nanocomposites have been prepared by the metal organic chemical vapor deposition (MOCVD) growth technique using iron pentacarbonyl and bis(arene)chromium compounds, respectively. Composites structures and morphologies preliminary study were performed using X-ray diffraction, scanning and transmission electron microscopy and Raman scattering. The atomic and chemical composition of the MWCNTs’ surface, Fe-coating and Cr-coating and interface—(MWCNTs surface)/(metal coating) were studied by total electron yield method in the region of near-edge X-ray absorption fine structure (NEXAFS) C1s, Fe2p and Cr2p absorption edges using synchrotron radiation of the Russian-German dipole beamline (RGBL) at BESSY-II and the X-ray photoelectron spectroscopy (XPS) method using the ESCALAB 250 Xi spectrometer and charge compensation system. The absorption cross sections in the NEXAFS C1s edge of the nanocomposites and MWCNTs were measured using the developed approach of suppressing and estimating the contributions of the non-monochromatic background and multiple reflection orders radiation from the diffraction grating. The efficiency of the method was demonstrated by the example of the Cr/MWCNT nanocomposite, since its Cr2p NEXAFS spectra contain additional C1s NEXAFS in the second diffraction order. The study has shown that the MWCNTs’ top layers in composite have no significant destruction; the MWCNTs’ metal coatings are continuous and consist of Fe3O4 and Cr2O3. It is shown that the interface between the MWCNTs and pyrolytic Fe and Cr coatings has a multilayer structure: a layer in which carbon atoms along with epoxy –C–O–C– bonds form bonds with oxygen and metal atoms from the coating layer is formed on the outer surface of the MWCNT, a monolayer of metal carbide above it and an oxide layer on top. The iron oxide and chromium oxide adhesion is provided by single, double and epoxy chemical binding formation between carbon atoms of the MWCNT top layer and the oxygen atoms of the coating, as well as the formation of bonds with metal atoms

    NEXAFS-спектры и магнитная восприимчивость ниобата висмута, допированного никелем и хромом

    Get PDF
    The electronic state and character of exchange interactions of nickel and chromium atoms in solid solutions of Bi5Nb3-3xМ3xO15-δ (М-Cr,Ni) was researched by methods of magnetic susceptibility and NEXAFS-spectroscopy. NEXAFS spectra of nickel and chromium oxides were obtained. According to X-ray spectroscopy in solid solutions, chromium atoms are mainly in the charge state of Cr(III), and nickel atoms in the high-spin state of Ni(II) in octahedral coordination. In solid solutions, paramagnetic chromium and nickel atoms are present in the form of monomers and clusters with a common antiferromagnetic type of exchangeМетодами магнитной восприимчивости и NEXAFS-спектроскопии исследовано электронное состояние и характер обменных взаимодействий атомов никеля и хрома в составе твердых растворов Bi5Nb3-3xМ3xO15-δ (М-Cr,Ni). Получены NEXAFS-спектры оксидов никеля и хрома. По данным рентгеновской спектроскопии, в твердых растворах атомы хрома находятся преимущественно в зарядовом состоянии Cr(III), а атомы никеля – в высокоспиновом состоянии Ni(II) в октаэдрической координации. В твердых растворах парамагнитные атомы хрома и никеля присутствуют в форме мономеров и кластеров с общим антиферромагнитным типом обмен

    Features of the Phase Formation of Cr/Mn/Fe/Co/Ni/Cu Codoped Bismuth Niobate Pyrochlore

    No full text
    The phase formation process of Bi2Cr1/6Mn1/6Fe1/6Co1/6Ni1/6Cu1/6Nb2O9+Δ containing 3d-ions of transition elements in equimolar quantities was studied in a wide temperature range (400–1050 °C). The complex oxide crystallizes in the structural type of pyrochlore (sp. gr. Fd-3m:2, a = 10.4937(2) Å). The investigation of the multi-element pyrochlore phase formation process showed that the synthesis goes through a series of successive stages, during which the transition from Bi-rich to Bi-depleted compounds takes place. The predecessor of the pyrochlore phase is bismuth orthorhombic modification orthoniobate (α-BiNbO4) with an equimolar ratio of Bi(III)/Nb(V) ions. The pyrochlore phase is formed as a result of bismuth orthoniobate doping with transition element ions. The complex oxides Bi14CrO24, Bi25FeO40, BiNbO4, and Bi5Nb3O15 appeared as intermediate phases during the synthesis. The interaction between the initial oxide precursors is fixed at temperatures above 500 °C. The phase transition of α-Bi2O3 into β-Bi2O3 near 500 °C is observed. Varying the heat treatment duration at each synthesis step did not qualitatively change the phase composition of the sample but had an effect on the quantitative phase ratio. Phase-pure pyrochlore of the given composition by solid-phase synthesis method can be obtained at a temperature no lower than 1050 °C. Ceramics are characterized by low-porous dense microstructure with blurred outlines of grain boundaries

    Study of Marine Sponges Graphitization during Heat Treatment up to 1200 °C

    No full text
    The results of studies of marine sponge carbonization processes during thermal treatment in an argon atmosphere in the temperature range from room temperature to 1200 °C are presented. The spatial structure, atomic composition of native and carbonized sponges, and their changes during pyrolysis were characterized using a set of methods that are informative at the macro- (thermogravimetric analysis, derivative thermogravimetric analysis, differential scanning calorimetry), micro- (Raman spectroscopy, scanning electron microscopy, energy dispersive spectroscopy), and nanoscales (X-ray absorption and photoelectron spectroscopy using synchrotron radiation and a sample charge compensation system). Preservation of the 3D architecture at the macro- and microlevels and graphitization of the interfibril medium with the formation of turbostratic graphite at the nanolevel were demonstrated. It was shown that the atomic contents of nitrogen, carbon, and oxygen in the spongin were ~2–3 at.%, ~5 at.%, and ~4 at.%, respectively. The matter concentrated in the space between the spongin fibrils included ~70 at.% carbon and ~11 at.% oxygen, with a large proportion of carbon (~63 at.%) involved in the formation of aromatic and C–C bonds and the remainder in carbon monoxide compounds. After the decomposition of spongin at 400 °C, this substance transformed into turbostratic graphite, preserving the 3D architecture of the original marine sponge as the temperature rose

    The Formation of Nanoscale Closed Graphene Surfaces during Fullerite C<sub>60</sub> Hot Isostatic Pressing

    No full text
    The fullerite C60 modified by hot isostatic pressing (HIP) at 0.1 GPa in argon near and beyond its thermal stability region (920–1270 K temperature interval) was studied by X-ray diffractometry, Raman spectroscopy, ultra soft X-ray photoelectron and near edge X-ray absorption fine structure spectroscopy. It was found that the C60 molecules merge into closed nanocapsules with a graphene surface during the thermal treatment. The conducted studies showed that using HIP treatment of the fullerite C60, it is possible to obtain a chemically resistant material with a high hardness and elasticity, as well as a density lower than that of the graphite. This new material, consisting of closed graphene nanocapsules 2–5 nm in size, formed by sp2 covalent bonds between carbon atoms is promising for various applications, and as a basis for the synthesis of new composite materials

    The Formation of Nanoscale Closed Graphene Surfaces during Fullerite C60 Hot Isostatic Pressing

    No full text
    The fullerite C60 modified by hot isostatic pressing (HIP) at 0.1 GPa in argon near and beyond its thermal stability region (920&ndash;1270 K temperature interval) was studied by X-ray diffractometry, Raman spectroscopy, ultra soft X-ray photoelectron and near edge X-ray absorption fine structure spectroscopy. It was found that the C60 molecules merge into closed nanocapsules with a graphene surface during the thermal treatment. The conducted studies showed that using HIP treatment of the fullerite C60, it is possible to obtain a chemically resistant material with a high hardness and elasticity, as well as a density lower than that of the graphite. This new material, consisting of closed graphene nanocapsules 2&ndash;5 nm in size, formed by sp2 covalent bonds between carbon atoms is promising for various applications, and as a basis for the synthesis of new composite materials

    Quantitative Characterization of Oxygen-Containing Groups on the Surface of Carbon Materials: XPS and NEXAFS Study

    No full text
    The results of the comparative quantitative study of oxygen-containing groups adsorbed on the surface of carbonized sponge scaffold (CSS), highly oriented pyrolytic graphite (HOPG), fullerite C60 and multi-walled carbon nanotubes (MWCNTs) introduced into a high vacuum from the atmosphere without any pre-treatment of the surface are discussed. The studied materials are first tested by XRD and Raman spectroscopy, and then quantitatively characterized by XPS and NEXAFS. The research results showed the presence of carbon oxides and water-dissociation products on the surfaces of materials. It was shown that main source of oxygen content (~2%) on the surface of HOPG, MWCNTs, and C60 powder is water condensed from the atmosphere in the form of an adsorbed water molecule and hydroxyl group. On the CSS surface, oxygen atoms are present in the forms of carbon oxides (4–5%) and adsorbed water molecules and hydroxyl groups (5–6%). The high content of adsorbed water on the CSS surface is due to the strong roughness and high porosity of the surface

    The Identification of Cu–O–C Bond in Cu/MWCNTs Hybrid Nanocomposite by XPS and NEXAFS Spectroscopy

    No full text
    The results of the research of a composite based on multi-walled carbon nanotubes (MWCNTs) decorated with CuO/Cu2O/Cu nanoparticles deposited by the cupric formate pyrolysis are discussed. The study used a complementary set of methods, including scanning and transmission electron microscopy, X-ray diffractometry, Raman, and ultrasoft X-ray spectroscopy. The investigation results show the good adhesion between the copper nanoparticles coating and the MWCNT surface through the oxygen atom bridge formation between the carbon atoms of the MWCNT outer graphene layer and the oxygen atoms of CuO and Cu2O oxides. The formation of the Cu–O–C bond between the coating layer and the outer nanotube surface is clearly confirmed by the results of the O 1s near edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) of the Cu/MWCNTs nanocomposite. The XPS measurements were performed using a laboratory spectrometer with sample charge compensation, and the NEXAFS studies were carried out using the synchrotron radiation of the Russian–German dipole beamline at BESSY-II (Berlin, Germany) and the NanoPES station at the Kurchatov Center for Synchrotron Radiation and Nanotechnology (Moscow, Russia)
    corecore