15 research outputs found

    THE CONCEPTUAL BASIS FOR THE IMPROVEMENTOF MATHEMATICS EDUCATION AT TECHNICAL UNIVERSITY

    Full text link
    The article sums up the outcomes of mathematics teachers’ experience and presents the results of scientific-methodical work of the Department of Higher mathematics of Bauman Moscow State Technical University on the problems of training engineering students, implementation of learner-centered educational paradigm, the integration of mathematics in University science education. The authors present a system of theoretical conceptions worked out by a teaching staff of the Department of higher mathematics on engineering education in general and on mathematics as a core subject in engineering training and express their view on the relationship between technical and mathematical education. On theone hand, the students’ research activities of studentsis treated as anindependent problem, and on the other hand + in relation to studying physics and mathematics. The article discusses the possibility of organization of students’ independent cognitive activity involving students in the assessment workshop, the implementation of interdisciplinary connections in physics and mathematics. The article is addressed to the mathematics teachers at engineering universities and students of physical and mathematical faculties of universities, and to the methodologists

    Ag-Based Catalysts in Heterogeneous Selective Oxidation of Alcohols: A Review

    Get PDF
    Alcohols (bioalcohols) is a class of chemicals that are used as a feedstock for the manufacturing of a large number of valuable intermediates in industrially important processes. Currently, sustainable technologies for selective conversion of alcohols utilize “green” oxidants, mainly, ambient air or oxygen. Due to the high affinity of oxygen towards silver, the latter serves as an active component of supported heterogeneous catalysts. In this review, we consider Ag-based catalysts that participate in gas- or liquid-phase oxidation of alcohols. Oxidation of methanol, ethanol, ethylene glycol, propylene glycol, glycerol, benzyl and allyl alcohols is mostly considered. A particular attention is paid to selective photooxidation of alcohols over Ag-based catalysts. We discuss the catalyst composition in terms of (1) the state of the active component, (2) the nature of the substrate, (3) support nature, and (4) the strength of the metal–support interactions

    Evaluation of Docking Target Functions by the Comprehensive Investigation of Protein-Ligand Energy Minima

    Full text link
    The adequate choice of the docking target function impacts the accuracy of the ligand positioning as well as the accuracy of the protein-ligand binding energy calculation. To evaluate a docking target function we compared positions of its minima with the experimentally known pose of the ligand in the protein active site. We evaluated five docking target functions based on either the MMFF94 force field or the PM7 quantum-chemical method with or without implicit solvent models: PCM, COSMO, and SGB. Each function was tested on the same set of 16 protein-ligand complexes. For exhaustive low-energy minima search the novel MPI parallelized docking program FLM and large supercomputer resources were used. Protein-ligand binding energies calculated using low-energy minima were compared with experimental values. It was demonstrated that the docking target function on the base of the MMFF94 force field in vacuo can be used for discovery of native or near native ligand positions by finding the low-energy local minima spectrum of the target function. The importance of solute-solvent interaction for the correct ligand positioning is demonstrated. It is shown that docking accuracy can be improved by replacement of the MMFF94 force field by the new semiempirical quantum-chemical PM7 method

    Enhanced Antioxidant Activity and Reduced Cytotoxicity of Silver Nanoparticles Stabilized by Different Humic Materials

    Full text link
    The current article describes the biological activity of new biomaterials combining the “green” properties of humic substances (HSs) and silver nanoparticles. The aim is to investigate the antioxidant activity (AOA) of HS matrices (macroligands) and AgNPs stabilized with humic macroligands (HS-AgNPs). The unique chemical feature of HSs makes them very promising ligands (matrices) for AgNP stabilization. HSs have previously been shown to exert many pharmacological effects mediated by their AOA. AgNPs stabilized with HS showed a pronounced ability to bind to reactive oxygen species (ROS) in the test with ABTS. Also, higher AOA was observed for HS-AgNPs as compared to the HS matrices. In vitro cytotoxicity studies have shown that the stabilization of AgNPs with the HS matrices reduces the cytotoxicity of AgNPs. As a result of in vitro experiments with the use of 2,7-dichlorodihydrofluorescein diacetate (DCFDA), it was found that all HS materials tested and the HS-AgNPs did not exhibit prooxidant effects. Moreover, more pronounced AOA was shown for HS-AgNP samples as compared to the original HS matrices. Two putative mechanisms of the pronounced AOA of the tested compositions are proposed: firstly, the pronounced ability of HSs to inactivate ROS and, secondly, the large surface area and surface-to-volume ratio of HS-AgNPs, which facilitate electron transfer and mitigate kinetic barriers to the reduction reaction. As a result, the antioxidant properties of the tested HS-AgNPs might be of particular interest for biomedical applications aimed at inhibiting the growth of bacteria and viruses and the healing of purulent wounds

    Integrated SubmmWave Receiver: Development and Applications

    Full text link
    A superconducting integrated receiver (SIR) comprises in a single chip a planar antenna combined with a superconductor-insulator-superconductor (SIS) mixer, a superconducting Flux Flow Oscillator (FFO) acting as a Local Oscillator (LO) and a second SIS harmonic mixer (HM) for the FFO phase locking. In this report, an overview of the SIR and FFO developments and optimizations is presented. Improving on the fully Nb-based SIR we have developed and studied Nb–AlN–NbN circuits, which exhibit an extended operation frequency range. Continuous tuning of the phase locked frequency has been experimentally demonstrated at any frequency in the range 350–750GHz. The FFO free-running linewidth has been measured between 1 and 5MHz, which allows to phase lock up to 97% of the emitted FFO power. The output power of the FFO is sufficient to pump the matched SIS mixer. Therefore, it is concluded that the Nb–AlN–NbN FFOs are mature enough for practical applications. These achievements enabled the development of a 480–650GHz integrated receiver for the atmospheric-research instrument TErahertz and submillimeter LImb Sounder (TELIS). This balloon-borne instrument is a three-channel superconducting heterodyne spectrometer for the detection of spectral emission lines of stratospheric trace gases that have their rotational transitions at THz frequencies. One of the channels is based on the SIR technology. We demonstrate for the first time the capabilities of the SIR technology for heterodyne spectroscopy in general, and atmospheric limb sounding in particular. We also show that the application of SIR technology is not limited to laboratory environments, but that it is well suited for remote operation under harsh environmental conditions. Light weight and low power consumption combined with broadband operation and nearly quantum limited sensitivity make the SIR a perfect candidate for future airborne and space-borne missions. The noise temperature of the SIR was measured to be as low as 120K in double sideband operation, with an intermediate frequency band of 4–8GHz. The spectral resolution is well below 1MHz, confirmed by our measurements. Remote control of the SIR under flight conditions has been demonstrated in a successful balloon flight in Kiruna, Sweden. Capability of the SIR for high-resolution spectroscopy has been successfully proven also in a laboratory environment by gas cell measurements. The possibility to use SIR devices for the medical analysis of exhaled air will be discussed. Many medically relevant gases have spectral lines in the sub-terahertz range and can be detected by an SIR-based spectrometer. The SIR can be considered as an operational device, ready for many applications
    corecore