9 research outputs found

    Metallurgical Effect of Rare-Earth Lanthanum Fluoride and Boride in the Composite Coating of Wires in the Arc Welding of Bainitic-Martensitic and Austenitic Steel

    No full text
    For arc welding of high-strength and cold-resistant steels, the author developed an advanced design of steel wire with a micro-composite coating of a nickel matrix and nanoparticles of LaF3 and LaB6, which improves the metallurgical influence of rare-earth elements (REE) and forms refractory sulphides and oxides of REE, as well as boron nitride. The addition of 0.1–0.3 wt% La in the weld pool leads to an increase in the content of the refractory compounds La2O3, LaO2, and LaS, and to the reduction in the content of the low-melting and brittle oxides and sulphides SiO2, SiO, MnO, MnS, and SiS. The use of steel wire with the composite coating of LaF3 and LaB6 allows for microstructural refinement when welding S960QL bainitic-martensitic steel and X70 API bainitic steel, and increases the impact toughness of the welds by 1.17–1.6 times

    Thermophysical Properties of Electric Arc Plasma and the Wire Melting Effect with Lanthanum and Sulfur Fluorides Addition in Wire Arc Additive Manufacturing

    No full text
    Achieving a higher quality in wire arc additive manufacturing (WAAM) is a result of the development of welding metallurgy, the development of filler wires, and the control of the thermophysical properties of the electric arc. In this paper, the authors developed composite wires for WAAM with a Ni-LaF3, Ni-LaB6 coating. The addition of LaF3, LaB6, and SF6 increases specific heat, thermal conductivity, enthalpy, and degree of plasma ionization, which leads to the increase in the transfer of heat from the arc plasma to the wire and to the change in the balance of forces during wire melting. The increase in the Lorentz electromagnetic force and the decrease in the surface tension force made it possible to reduce the droplet diameter and the number of short circuits during wire melting. The change in the thermophysical properties of the plasma and droplet transfer with the addition of LaF3, LaB6, and SF6 made it possible to increase the welding current, penetration depth, accuracy of the geometric dimensions of products in WAAM, reduce the wall thickness of products, and refine the microstructure of the weld metal using G3Si1, 316L, AlMg5Mn1Ti, and CuCr0.7 wires

    Advanced Trends in Metallurgy and Weldability of High-Strength Cold-Resistant and Cryogenic Steels

    No full text
    Thermomechanical Controlled Processing (TMCP), the initial microstructure and mechanical properties of rolled products made of high-strength steels, have a significant influence on the properties and reliability of welded structures for low temperature and cryogenic service. This paper systematizes advanced research trends in the field of metallurgy and weldability of high-strength cold-resistant and cryogenic steels. The classification and properties of high-strength steels are given and TMCP diagrams and phase transformations are considered. Modern methods of improving the viscoplasticity of rolled steel and welded joints are analyzed. The problems of the weldability of high-strength steels are reduction of impact toughness at low temperatures, hydrogen embrittlement, anisotropy, and softening of welded joints in the heat-affected zone. The authors propose a systemic concept and methods for improving the metallurgy and weldability of high-strength steels for low temperature and cryogenic service

    Metallurgy and Mechanism of Underwater Wet Cutting Using Oxidizing and Exothermic Flux-Cored Wires

    No full text
    This paper considers the metallurgical processes of dissociation, ionization, oxidation, deoxidation, and dissolution of oxides during underwater wet cutting. A multiphase mechanism of underwater wet cutting consisting of working and idle cycles of the electrical process in a pulsating vapor gas bubble is proposed. A model of arc penetration into metal due to metal oxidation and stabilization of the arc by the inner walls of a narrow kerf is proposed. For underwater cutting of 10 KhSND, 304L steel, CuAl5, and AlMg4.5Mn0.7 alloy, we provide a principle of modeling the phase composition of the gas mixture based on high oxygen concentration, improving ionization, enthalpy, heat capacity, and thermal conductivity of plasma through the use of a mixture of KNO3, FeCO3 and aluminum. The method of improving the thermophysical properties and ionization of plasma due to the exothermic effect when introducing Fe3O4, MoO2, WO2 oxides and Al, Mg, Ti deoxidizers is proposed. Although a negative effect of refractory slag was revealed, it could be removed by using the method of reducing surface tension through the ionic dissolution of refractory oxides in Na3AlF6 cryolite. In underwater cutting of 10 KhSND and 304L, the steel welding current was 344–402 A with a voltage of 36–39 V; in cutting of CuAl5 and AlMg4.5Mn0.7 alloy, the welding current was 360–406; 240 A, with a voltage of 35–37; 38 V, respectively, with the optimal composition of flux-cored wire: 50–60% FeCO3 and KNO3, 20–30% aluminum, 20% Na3AlF6. Application of flux-cored wires of the KNO3-FeCO3-Na3AlF6-Al system allowed stable cutting of 10KhSND, AISI 304L steels, and CuAl5 bronze with kerf width up to 2.5–4.7 mm

    COMPOSITE ACTIVATING COATING EFFECT ON WELD GEOMETRY

    No full text
    The effect of the composite activating coating based on the halide salts upon the weld geometry under gas-shielded welding by the reverse polarity current has been investigated. The dependence of the fusion penetration on the electrode wire coating is found out

    The Effect of Electrochemical Composite Coatings with LaF3-LaB6 Particles in Nickel–Copper Matrix on the Metallurgical Processes in Arc Welding of Low Alloy Ferrite-Pearlite Steels

    No full text
    Development of welding consumables with fluorides and borides of rare earth metals is a promising area for improving the weldability of low alloy steels. As lanthanum fluoride and boride dissociate, lanthanum and boron dissolve in the weld pool and the welding arc plasma is saturated with fluorine. As a result of FeO, MnO, SiO2 deoxidation and FeS, MnS desulfurization, refractory lanthanum sulfides and oxides La2O3, La2S3 are formed in the weld pool, which can be the crystallization nuclei in the weld pool and the origin of acicular ferrite nucleation. The paper proposes a model of metallurgical processes in the arc and weld pool, as well as a model of electrochemical adsorption of Ni2+ cations in colloidal electrolytes during electrostatic deposition of nano-dispersed insoluble particles of LaF3 or LaB6 on the surface of wire. The paper discusses the constructional design of the welding wire and the technology for forming electrochemical composite coatings with copper and nickel matrix. The composite wires applied in the welding of low alloy steels make it possible to refine the microstructure, increase the tensile strength by 4% and the impact toughness of welds by 20%

    Modeling of Hydrogen Diffusion in Inhomogeneous Steel Welded Joints

    No full text
    Hydrogen is a main factor in cold cracking or hydrogen-induced cracking. The most crack susceptible region of a steel welded joint is the heat affected zone (HAZ). The formulation and functional-analytical solution of the one-dimensional problem of hydrogen diffusion in an inhomogeneous butt-welded joint considering weld and joint dimensions and initial hydrogen distribution as well as hydrogen diffusion coefficients and solubilities are presented. It is shown that the peak hydrogen concentration in the HAZ of inhomogeneous joints varies in direct proportion to the initial hydrogen concentration in the weld metal. It is inversely proportional to the ratio of hydrogen solubilities in the weld metal and the HAZ metal and is nonlinear in the diffusion coefficient ratio of these metals. The peak hydrogen concentration in the HAZ can exceed 170% of the average initial concentration in the joint if martensitic steel is welded using low-carbon low-alloy welding consumables. The utilization of austenitic consumables leads to a dramatic reduction in the hydrogen concentration in the HAZ in comparison with the non-austenitic consumables. No direct relationship was found between the hydrogen concentration in the HAZ and the hydrogen evolution from the joint surface
    corecore