26 research outputs found

    Echinochrome A Reverses Kidney Abnormality and Reduces Blood Pressure in a Rat Model of Preeclampsia

    No full text
    We aimed to observe the effects of Echinochrome A (Ech A) on systemic changes using a rat model of preeclampsia. The results showed that an infusion of angiotensin II (Ang II) through an osmotic pump (1 μg/kg/min) on GD 8 increased systolic and diastolic blood pressures and reduced fetal weight and placental weight. The diameters of the glomeruli were expended and glomeruli capillaries were diminished. No change was observed in the heart and liver in the Ang II group, but epithelial structures were disrupted in the uterus. Ech A treatment on GD 14 (100 μg/μL) through the jugular vein reduced systolic and diastolic blood pressures and reversed glomerulus alterations, but the fetal or placental parameters were unaffected. Ech A only partly reversed the effect on the uterus. The mRNA expression of TNF–α was increased and IL–10 and VEGF were reduced in the uterus of the Ang II group, while Ech A restored these changes. A similar trend was observed in the kidney, liver, and heart of this group. Furthermore, Bcl–2 was reduced and Bcl–2/Bax ratios were significantly reduced in the kidney and heart of the Ang II group, while Ech A reversed these changes. We suggest that Ech A modulates inflammation and apoptosis in key systemic organs in Ang II-induced rat preeclampsia and preserves kidney and uterus structures and reduces blood pressure

    Spinochrome D Attenuates Doxorubicin-Induced Cardiomyocyte Death via Improving Glutathione Metabolism and Attenuating Oxidative Stress

    No full text
    Doxorubicin, an anthracycline from Streptomyces peucetius, exhibits antitumor activity against various cancers. However, doxorubicin is cardiotoxic at cumulative doses, causing increases in intracellular reactive oxygen species in the heart. Spinochrome D (SpD) has a structure of 2,3,5,6,8-pentahydroxy-1,4-naphthoquinone and is a structural analogue of well-known sea urchin pigment echinochrome A. We previously reported that echinochrome A is cardioprotective against doxorubicin toxicity. In the present study, we assessed the cardioprotective effects of SpD against doxorubicin and determined the underlying mechanism. 1H-NMR-based metabolomics and mass spectrometry-based proteomics were utilized to characterize the metabolites and proteins induced by SpD in a human cardiomyocyte cell line (AC16) and human breast cancer cell line (MCF-7). Multivariate analyses identified 12 discriminating metabolites (variable importance in projection > 1.0) and 1814 proteins from SpD-treated AC16 cells. Proteomics and metabolomics analyses showed that glutathione metabolism was significantly influenced by SpD treatment in AC16 cells. SpD treatment increased ATP production and the oxygen consumption rate in D-galactose-treated AC16 cells. SpD protected AC16 cells from doxorubicin cytotoxicity, but it did not affect the anticancer properties. With SpD treatment, the mitochondrial membrane potential and mitochondrial calcium localization were significantly different between cardiomyocytes and cancer cell lines. Our findings suggest that SpD could be cardioprotective against the cytotoxicity of doxorubicin

    Development of Novel Pharmaceutical Forms of the Marine Bioactive Pigment Echinochrome A Enabling Alternative Routes of Administration

    No full text
    Echinochrome A (EchA), a marine bioactive pigment isolated from various sea urchin species, is the active agent of the clinically approved drug Histochrome®. EchA is currently only available in the form of an isotonic solution of its di- and tri-sodium salts due to its poor water solubility and sensitivity to oxidation. Electrospun polymeric nanofibers have lately emerged as promising drug carriers capable of improving the dissolution and bioavailability of drugs with limited water solubility. In the current study, EchA isolated from sea urchins of the genus Diadema collected at the island of Kastellorizo was incorporated in electrospun micro-/nanofibrous matrices composed of polycaprolactone and polyvinylpyrrolidone in various combinations. The physicochemical properties of the micro-/nanofibers were characterized using SEM, FT-IR, TGA and DSC analyses. The fabricated matrices exhibited variable dissolution/release profiles of EchA, as evidenced in in vitro experiments using gastrointestinal-like fluids (pH 1.2, 4.5 and 6.8). Ex vivo permeability studies using the EchA-loaded micro-/nanofibrous matrices showed an increased permeation of EchA across the duodenum barrier. The results of our study clearly show that electrospun polymeric micro-/nanofibers represent promising carriers for the development of new pharmaceutical formulations with controlled release, as well as increased stability and solubility of EchA, suitable for oral administration, while offering the potential for targeted delivery

    Polyphenolic Compounds from Lespedeza Bicolor Root Bark Inhibit Progression of Human Prostate Cancer Cells via Induction of Apoptosis and Cell Cycle Arrest

    No full text
    From a root bark of Lespedeza bicolor Turch we isolated two new (7 and 8) and six previously known compounds (1–6) belonging to the group of prenylated polyphenols. Their structures were elucidated using mass spectrometry, nuclear magnetic resonance and circular dichroism spectroscopy. These natural compounds selectively inhibited human drug-resistant prostate cancer in vitro. Prenylated pterocarpans 1–3 prevented the cell cycle progression of human cancer cells in S-phase. This was accompanied by a reduced expression of mRNA corresponding to several human cyclin-dependent kinases (CDKs). In contrast, compounds 4–8 induced a G1-phase cell cycle arrest without any pronounced effect on CDKs mRNA expression. Interestingly, a non-substituted hydroxy group at C-8 of ring D of the pterocarpan skeleton of compounds 1–3 seems to be important for the CDKs inhibitory activity

    Echinochrome A Promotes Ex Vivo Expansion of Peripheral Blood-Derived CD34+ Cells, Potentially through Downregulation of ROS Production and Activation of the Src-Lyn-p110δ Pathway

    No full text
    Intracellular reactive oxygen species (ROS) play an important role in the proliferation and differentiation of hematopoietic stem and progenitor cells (HSPCs). HSPCs are difficult to be expanded ex vivo while maintaining their stemness when they are exposed to oxidative damage after being released from the bone marrow. There have been efforts to overcome this limitation by using various cytokine cocktails and antioxidants. In this study, we investigated the effects of echinochrome A (Ech A)-a well-established and non-toxic antioxidant-on the ex vivo expansion of HSPCs by analyzing a CD34+ cell population and their biological functions. We observed that Ech A-induced suppression of ROS generation and p38-MAPK/JNK phosphorylation causes increased expansion of CD34+ cells. Moreover, p38-MAPK/JNK inhibitors SB203580 and SP600125 promoted ex vivo expansion of CD34+ cells. We also demonstrated that the activation of Lyn kinase and p110δ is a novel mechanism for Ech A to enhance ex vivo expansion of CD34+ cells. Ech A upregulated phospho-Src, phospho-Lyn, and p110δ expression. Furthermore, the Ech A-induced ex vivo expansion of CD34+ cells was inhibited by pretreatment with the Src family inhibitor PP1 and p110δ inhibitor CAL-101; PP1 blocked p110δ upregulation and PI3K/Akt activation, whereas CAL-101 and PI3K/Akt pathway inhibitor LY294002 did not block Src/Lyn activation. These results suggest that Ech A initially induces Src/Lyn activation, upregulates p110δ expression, and finally activates the PI3K/Akt pathway. CD34+ cells expanded in the presence of Ech A produced equal or more hematopoietic colony-forming cells than unexpanded CD34+ cells. In conclusion, Ech A promotes the ex vivo expansion of CD34+ cells through Src/Lyn-mediated p110δ expression, suppression of ROS generation, and p38-MAPK/JNK activation. Hence, Ech A is a potential candidate modality for the ex vivo, and possibly in vivo, expansion of CD34+ cells

    Multiple Effects of Echinochrome A on Selected Ion Channels Implicated in Skin Physiology

    No full text
    Echinochrome A (Ech A), a naphthoquinoid pigment from sea urchins, is known to have anti-inflammatory and analgesic effects that have been suggested to be mediated by antioxidant activity and intracellular signaling modulation. In addition to these mechanisms, the ion channels in keratinocytes, immune cells, and nociceptive neurons may be the target for the pharmacological effects. Here, using the patch clamp technique, we investigated the effects of Ech A on the Ca2+-permeable TRPV3, TRPV1 and Orai1 channels and the two-pore domain K+ (K2P) channels (TREK/TRAAK, TASK-1, and TRESK) overexpressed in HEK 293 cells. Ech A inhibited both the TRPV3 and Orai1 currents, with IC50 levels of 2.1 and 2.4 μM, respectively. The capsaicin-activated TRPV1 current was slightly augmented by Ech A. Ech A alone did not change the amplitude of the TREK-2 current (ITREK2), but pretreatments with Ech A markedly facilitated ITREK2 activation by 2-APB, arachidonic acid (AA), and acidic extracellular pH (pHe). Similar facilitation effects of Ech A on TREK-1 and TRAAK were observed when they were stimulated with 2-APB and AA, respectively. On the contrary, Ech A did not affect the TRESK and TASK-1 currents. Interestingly, the ITREK2 maximally activated by the combined application of 2-APB and Ech A was not inhibited by norfluoxetine but was still completely inhibited by ruthenium red. The selective loss of sensitivity to norfluoxetine suggested an altered molecular conformation of TREK-2 by Ech A. We conclude that the Ech A-induced inhibition of the Ca2+-permeable cation channels and the facilitation of the TREK/TRAAK K2P channels may underlie the analgesic and anti-inflammatory effects of Ech A

    Phanogracilins A–C, New Bibenzochromenones of Crinoid <i>Phanogenia gracilis</i> (Hartlaub, 1890)

    No full text
    Three new bibenzochromenones named phanogracilins A–C (1–3) were isolated from the crinoid Phanogenia gracilis. The structure of 1 was established using X-ray crystallography as 5,5′,6,6′,8,8′-hexahydroxy-2,2′-dipropyl-4H,4′H-[7,9′-bibenzo[g]chromene]-4,4′-dione. This allowed us to assign reliably 2D NMR signals for compound 1 and subsequently for its isomer 2 that differed in the connecting position of two benzochromenone moieties (7,10′ instead of 7,9′), and compound for 3 that differed in the length of the aliphatic chain of one of the fragments. Compound 4 was derived from 1 in alkaline conditions, and its structure was elucidated as 5,5′,6′,8,8′-pentahydroxy-2,2′-dipropyl-4H,4′H-[7,9′-bibenzo[g]chromene]-4,4′,6,9-tetraone. Even though compounds 1–4 did not contain stereo centers, they possessed notable optical activity due to sterical hindrances, which limited the internal rotation of two benzochromenone fragments around C(7)–C(9′/10′) bonds. Isolated bibenzochromenones 1–4 were tested for their antiradical, neuroprotective and antimicrobial activities. Compounds 1, 3 and 4 demonstrated significant antiradical properties towards ABTS radicals higher than the positive control trolox. Compounds 1 and 4 exhibited moderate neuroprotective activity, increasing the viability of rotenone-treated Neuro-2a cells at a concentration of 1 µM by 9.8% and 11.8%, respectively. Compounds 1 and 3 at concentrations from 25 to 100 μM dose-dependently inhibited the growth of Gram-positive bacteria S. aureus and yeast-like fungi C. albicans, and they also prevented the formation of their biofilms. Compounds 2 and 4 exhibited low antimicrobial activity

    Multiple Effects of Echinochrome A on Selected Ion Channels Implicated in Skin Physiology

    No full text
    Echinochrome A (Ech A), a naphthoquinoid pigment from sea urchins, is known to have anti-inflammatory and analgesic effects that have been suggested to be mediated by antioxidant activity and intracellular signaling modulation. In addition to these mechanisms, the ion channels in keratinocytes, immune cells, and nociceptive neurons may be the target for the pharmacological effects. Here, using the patch clamp technique, we investigated the effects of Ech A on the Ca2+-permeable TRPV3, TRPV1 and Orai1 channels and the two-pore domain K+ (K2P) channels (TREK/TRAAK, TASK-1, and TRESK) overexpressed in HEK 293 cells. Ech A inhibited both the TRPV3 and Orai1 currents, with IC50 levels of 2.1 and 2.4 μM, respectively. The capsaicin-activated TRPV1 current was slightly augmented by Ech A. Ech A alone did not change the amplitude of the TREK-2 current (ITREK2), but pretreatments with Ech A markedly facilitated ITREK2 activation by 2-APB, arachidonic acid (AA), and acidic extracellular pH (pHe). Similar facilitation effects of Ech A on TREK-1 and TRAAK were observed when they were stimulated with 2-APB and AA, respectively. On the contrary, Ech A did not affect the TRESK and TASK-1 currents. Interestingly, the ITREK2 maximally activated by the combined application of 2-APB and Ech A was not inhibited by norfluoxetine but was still completely inhibited by ruthenium red. The selective loss of sensitivity to norfluoxetine suggested an altered molecular conformation of TREK-2 by Ech A. We conclude that the Ech A-induced inhibition of the Ca2+-permeable cation channels and the facilitation of the TREK/TRAAK K2P channels may underlie the analgesic and anti-inflammatory effects of Ech A

    Antiviral and Antioxidant Properties of Echinochrome A

    No full text
    The aim of this study was to examine the in vitro antioxidant and antiviral activities of echinochrome A and echinochrome-based antioxidant composition against tick-borne encephalitis virus (TBEV) and herpes simplex virus type 1 (HSV-1). The antioxidant composition, which is a mixture of echinochrome A, ascorbic acid, and &#945;-tocopherol (5:5:1), showed higher antioxidant and antiviral effects than echinochrome A. We suppose that echinochrome A and its composition can both directly affect virus particles and indirectly enhance antioxidant defense mechanisms in the hosting cell. The obtained results allow considering the echinochrome A and the composition of antioxidants on its basis as the promising agents with the both antioxidant and antiviral activities
    corecore