3 research outputs found

    EBIC Imaging of Conductive Paths Formed in Graphene Oxide as a Result of Resistive Switching

    No full text
    The electron-beam-induced current (EBIC) method is utilized in this work to visualize conductive channels formed in graphene oxide as a result of resistive switching. Using metal–insulator–semiconductor (MIS) structures, an increase in the electron beam induced current by a few orders of magnitude as compared with the EBIC signal in metal–insulator–metal (MIM) structures is achieved. The mechanism of the EBIC image formation related to the conductive channels is explained by the separation and collection of the e-beam generated excess carriers by rectifying barrier nanocontacts formed at the graphene oxide/Si interface during resistive switching. It is shown that the collection efficiency of the formed nanocontacts decreases with the beam energy, in agreement with the theoretical predictions for the Schottky-like nanocontacts. An important advantage of the EBIC method is demonstrated in its ability to monitor the generation and elimination of high density conductive channels even when the current–voltage measurements cannot detect and separate these processes. EBIC study of the dynamics of the conductive channel formation can help better understand the underlying physical mechanisms of their generation

    Multiple Resistive Switching Mechanisms in Graphene Oxide-Based Resistive Memory Devices

    No full text
    Among the different graphene derivatives, graphene oxide is the most intensively studied material as it exhibits reliable and repeatable resistive switching. The operative mechanisms that are responsible for resistive switching are being intensively investigated, and three models explaining the change in the resistive states have been developed. These models are grounded in the metallic-like filamentary conduction, contact resistance modification and the oxidation of/reduction in the graphene oxide bulk. In this work, using Al/GO/n-Si structures, we demonstrate that all three of these operative mechanisms can simultaneously participate in the resistive switching of graphene oxide. Multiple point-like conduction channels in the graphene oxide films were detected by the electron beam-induced current (EBIC) technique. At the same time, large areas with increased conductivity were also revealed by EBIC. An analysis of these areas by Raman spectroscopy indicates the change in the graphene oxide bulk’s resistive properties. The EBIC data along with the measurements of the capacitance–voltage characteristics provided strong evidence of the involvement of an aluminum/graphene oxide interface in the switching processes. In addition, by using Al/GO/n-Si structures, we were able to identify unique local properties of the formed conductive channels, namely the change of the charge state of a conductive channel due to the creation of negatively charged traps and/or an increase in the GO work function
    corecore