490 research outputs found
Spectroscopic studies of fractal aggregates of silver nanospheres undergoing local restructuring
We present an experimental spectroscopic study of large random colloidal
aggregates of silver nanoparticles undergoing local restructuring. We argue
that such well-known phenomena as strong fluctuation of local electromagnetic
fields, appearance of "hot spots" and enhancement of nonlinear optical
responses depend on the local structure on the scales of several nanosphere
diameters, rather that the large-scale fractal geometry of the sample.Comment: 3.5 pages, submitted to J. Chem. Phy
Local anisotropy and giant enhancement of local electromagnetic fields in fractal aggregates of metal nanoparticles
We have shown within the quasistatic approximation that the giant
fluctuations of local electromagnetic field in random fractal aggregates of
silver nanospheres are strongly correlated with a local anisotropy factor S
which is defined in this paper. The latter is a purely geometrical parameter
which characterizes the deviation of local environment of a given nanosphere in
an aggregate from spherical symmetry. Therefore, it is possible to predict the
sites with anomalously large local fields in an aggregate without explicitly
solving the electromagnetic problem. We have also demonstrated that the average
(over nanospheres) value of S does not depend noticeably on the fractal
dimension D, except when D approaches the trivial limit D=3. In this case, as
one can expect, the average local environment becomes spherically symmetrical
and S approaches zero. This corresponds to the well-known fact that in trivial
aggregates fluctuations of local electromagnetic fields are much weaker than in
fractal aggregates. Thus, we find that, within the quasistatics, the
large-scale geometry does not have a significant impact on local
electromagnetic responses in nanoaggregates in a wide range of fractal
dimensions. However, this prediction is expected to be not correct in
aggregates which are sufficiently large for the intermediate- and
radiation-zone interaction of individual nanospheres to become important.Comment: 9 pages 9 figures. No revisions from previous version; only figure
layout is change
Effects of Size Polydispersity on the Extinction Spectra of Colloidal Nanoparticle Aggregates
We investigate the effect of particle polydispersity on the optical extinction spectra of colloidal aggregates of spherical metallic (silver) nanoparticles, taking into account the realistic interparticle gaps caused by layers of stabilizing polymer adsorbed on the metal surface (adlayers). The spectra of computer-generated aggregates are computed using two different methods. The coupled-multipole method is used in the quasistatic approximation and the coupled-dipole method beyond the quasistatics. The latter approach is applicable if the interparticle gaps are sufficiently wide relative to the particle radii. Simulations are performed for two different particle size distribution functions (bimodal and Gaussian), varying the number of particles per aggregate, and different distribution functions of the interparticle gap width. The strong influence of the latter factor on the spectra is demonstrated and investigated in detail
Catching Element Formation In The Act
Gamma-ray astronomy explores the most energetic photons in nature to address
some of the most pressing puzzles in contemporary astrophysics. It encompasses
a wide range of objects and phenomena: stars, supernovae, novae, neutron stars,
stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays
and relativistic-particle acceleration, and the evolution of galaxies. MeV
gamma-rays provide a unique probe of nuclear processes in astronomy, directly
measuring radioactive decay, nuclear de-excitation, and positron annihilation.
The substantial information carried by gamma-ray photons allows us to see
deeper into these objects, the bulk of the power is often emitted at gamma-ray
energies, and radioactivity provides a natural physical clock that adds unique
information. New science will be driven by time-domain population studies at
gamma-ray energies. This science is enabled by next-generation gamma-ray
instruments with one to two orders of magnitude better sensitivity, larger sky
coverage, and faster cadence than all previous gamma-ray instruments. This
transformative capability permits: (a) the accurate identification of the
gamma-ray emitting objects and correlations with observations taken at other
wavelengths and with other messengers; (b) construction of new gamma-ray maps
of the Milky Way and other nearby galaxies where extended regions are
distinguished from point sources; and (c) considerable serendipitous science of
scarce events -- nearby neutron star mergers, for example. Advances in
technology push the performance of new gamma-ray instruments to address a wide
set of astrophysical questions.Comment: 14 pages including 3 figure
- …