8 research outputs found

    Effect of Dysglycemia on Urinary Lipid Mediator Profiles in Persons With Pulmonary Tuberculosis

    Get PDF
    Background: Oxidized lipid mediators such as eicosanoids play a central role in the inflammatory response associated with tuberculosis (TB) pathogenesis. Diabetes mellitus (DM) leads to marked changes in lipid mediators in persons with TB. However, the associations between diabetes-related changes in lipid mediators and clearance of M. tuberculosis (Mtb) among persons on anti-TB treatment (ATT) are unknown. Quantification of urinary eicosanoid metabolites can provide insights into the circulating lipid mediators involved in Mtb immune responses. // Methods: We conducted a multi-site prospective observational study among adults with drug-sensitive pulmonary TB and controls without active TB; both groups had sub-groups with or without dysglycemia at baseline. Participants were enrolled from RePORT-Brazil (Salvador site) and RePORT-South Africa (Durban site) and stratified according to TB status and baseline glycated hemoglobin levels: a) TB-dysglycemia (n=69); b) TB-normoglycemia (n=64); c) non-TB/dysglycemia (n=31); d) non-TB/non-dysglycemia (n=29). We evaluated the following urinary eicosanoid metabolites: 11α-hydroxy-9,15-dioxo-2,3,4,5-tetranor-prostane-1,20-dioic acid (major urinary metabolite of prostaglandin E2, PGE-M), tetranor-PGE1 (metabolite of PGE2, TN-E), 9α-hydroxy-11,15-dioxo-2,3,4,5-tetranor-prostane-1,20-dioic acid (metabolite of PGD2, PGD-M), 11-dehydro-thromboxane B2 (11dTxB2), 2,3-dinor-6-keto-PGF1α (prostaglandin I metabolite, PGI-M), and leukotriene E4 (LTE4). Comparisons between the study groups were performed at three time points: before ATT and 2 and 6 months after initiating therapy. // Results: PGE-M and LTE4 values were consistently higher at all three time-points in the TB-dysglycemia group compared to the other groups (p<0.001). In addition, there was a significant decrease in PGI-M and LTE4 levels from baseline to month 6 in the TB-dysglycemia and TB-normoglycemia groups. Finally, TB-dysglycemia was independently associated with increased concentrations of PGD-M, PGI-M, and LTE4 at baseline in a multivariable model adjusting for age, sex, BMI, and study site. These associations were not affected by HIV status. // Conclusion: The urinary eicosanoid metabolite profile was associated with TB-dysglycemia before and during ATT. These observations can help identify the mechanisms involved in the pathogenesis of TB-dysglycemia, and potential biomarkers of TB treatment outcomes, including among persons with dysglycemia

    Prophylactic Treatment With Simvastatin Modulates the Immune Response and Increases Animal Survival Following Lethal Sepsis Infection

    Get PDF
    Chronic use of statins may have anti-inflammatory action, promoting immunomodulation and survival in patients with sepsis. This study aimed to analyze the effects of pretreatment with simvastatin in lethal sepsis induced by cecal ligation and puncture (CLP). Male Swiss mice received prophylactic treatment with simvastatin or pyrogen-free water orally in a single daily dose for 30 days. After this period, the CLP was performed. Naïve and Sham groups were performed as non-infected controls. Animal survival was monitored for 60 h after the CLP. Half of mice were euthanized after 12 h to analyze colony-forming units (CFUs); hematological parameters; production of IL-10, IL-12, IL-6, TNF-α, IFN-γ, and MCP-1; cell counts on peritoneum, bronchoalveolar lavage (BAL), bone marrow, spleen, and mesenteric lymph node; immunephenotyping of T cells and antigen presenting cells and production of hydrogen peroxide (H2O2). Simvastatin induced an increase in survival and a decrease in the CFU count on peritoneum and on BAL cells number, especially lymphocytes. There was an increase in the platelets and lymphocytes number in the Simvastatin group when compared to the CLP group. Simvastatin induced a greater activation and proliferation of CD4+ T cells, as well as an increase in IL-6 and MCP-1 production, in chemotaxis to the peritoneum and in H2O2 secretion at this site. These data suggest that simvastatin has an impact on the survival of animals, as well as immunomodulatory effects in sepsis induced by CLP in mice

    Leukotrienes enhance the bactericidal activity of alveolar macrophages against Klebsiella pneumoniae through the activation of NADPH oxidase

    No full text
    Leukotrienes (LTs) are lipid mediators that participate in inflammatory diseases and innate immune function. We sought to investigate the importance of LTs in regulating the microbicidal activity of alveolar macrophages (AMs) and the molecular mechanisms by which this occurs. The role of LTs in enhancing AM microbicidal activity was evaluated pharmacologically and genetically using in vitro challenge with Klebsiella pneumoniae. Exogenous LTs increased AM microbicidal activity in a dose- and receptor-dependent manner, and endogenous production of LTs was necessary for optimal killing. Leukotriene B4 (LTB4) was more potent than cysteinyl LTs. An important role for nicotinamide adenine dinucleotide (NADPH) oxidase in LT-induced microbicidal activity was indicated by the fact that bacterial killing was abrogated by the NADPH oxidase inhibitor diphenyleneiodonium (DPI; 10 μM) and in AMs derived from gp91phox-deficient mice. By contrast, LT-induced microbicidal activity was independent of the generation of nitric oxide. LTs increased H2O2 production, and LTB4 was again the more potent agonist. Both classes of LTs elicited translocation of p47phox to the cell membrane, and LTB4 induced phosphorylation of p47phox in a manner dependent on protein kinase C-δ (PKC-δ) activity. In addition, the enhancement of microbicidal activity by LTs was also dependent on PKC-δ activity. Our results demonstrate that LTs, especially LTB4, enhanceAM microbicidal activity through the PKC-δ-dependent activation of NADPH oxidase
    corecore