5 research outputs found

    UMG1/CD3ε-bispecific T-cell engager redirects T-cell cytotoxicity against diffuse large B-cell lymphoma

    Get PDF
    UMG1 is a unique epitope of CD43, not expressed by normal cells and tissues of haematopoietic and non-haematopoietic origin, except thymocytes and a minority (<5%) of peripheral blood T lymphocytes. By immunohistochemistry analysis of tissue microarray and pathology slides, we found high UMG1 expression in 20%-24% of diffuse large B-cell lymphomas (DLBCLs), including highly aggressive BCL2(high) and CD20(low) cases. UMG1 membrane expression was also found in DLBCL bone marrow-infiltrating cells and established cell lines. Targeting UMG1 with a novel asymmetric UMG1/CD3 epsilon-bispecific T-cell engager (BTCE) induced redirected cytotoxicity against DLBCL cells and was synergistic with lenalidomide. We conclude that UMG1/CD3 epsilon-BTCE is a promising therapeutic for DLBCLs

    The New Microtubule-Targeting Agent SIX2G Induces Immunogenic Cell Death in Multiple Myeloma

    No full text
    Microtubule-targeting agents (MTAs) are effective drugs for cancer treatment. A novel diaryl [1,2]oxazole class of compounds binding the colchicine site was synthesized as cis-restricted-combretastatin-A-4-analogue and then chemically modified to have improved solubility and a wider therapeutic index as compared to vinca alkaloids and taxanes. On these bases, a new class of tricyclic compounds, containing the [1,2]oxazole ring and an isoindole moiety, has been synthetized, among which SIX2G emerged as improved MTA. Several findings highlighted the ability of some chemotherapeutics to induce immunogenic cell death (ICD), which is defined by the cell surface translocation of Calreticulin (CALR) via dissociation of the PP1/GADD34 complex. In this regard, we computationally predicted the ability of SIX2G to induce CALR exposure by interacting with the PP1 RVxF domain. We then assessed both the potential cytotoxic and immunogenic activity of SIX2G on in vitro models of multiple myeloma (MM), which is an incurable hematological malignancy characterized by an immunosuppressive milieu. We found that the treatment with SIX2G inhibited cell viability by inducing G2/M phase cell cycle arrest and apoptosis. Moreover, we observed the increase of hallmarks of ICD such as CALR exposure, ATP release and phospho-eIF2α protein level. Through co-culture experiments with immune cells, we demonstrated the increase of (i) CD86 maturation marker on dendritic cells, (ii) CD69 activation marker on cytotoxic T cells, and (iii) phagocytosis of tumor cells following treatment with SIX2G, confirming the onset of an immunogenic cascade. In conclusion, our findings provide a framework for further development of SIX2G as a new potential anti-MM agent

    A Pronectin™ AXL-targeted first-in-class bispecific T cell engager (pAXLxCD3ε) for ovarian cancer

    No full text
    Abstract Background Pronectins™ are a new class of fibronectin-3-domain 14th-derived (14Fn3) antibody mimics that can be engineered as bispecific T cell engager (BTCE) to redirect immune effector cells against cancer. We describe here the in vitro and in vivo activity of a Pronectin™ AXL-targeted first-in-class bispecific T cell engager (pAXLxCD3ε) against Epithelial Ovarian Cancer (EOC). Methods pAXLxCD3ε T-cell mediated cytotoxicity was evaluated by flow cytometry and bioluminescence. pAXLxCD3ε mediated T-cell infiltration, activation and proliferation were assessed by immunofluorescence microscopy and by flow cytometry. Activity of pAXLxCD3ε was also investigated in combination with poly-ADP ribose polymerase inhibitors (PARPi). In vivo antitumor activity of pAXLxCD3ε was evaluated in immunocompromised (NSG) mice bearing intraperitoneal or subcutaneous EOC xenografts and immunologically reconstituted with human peripheral blood mononuclear cells (PBMC). Results pAXLxCD3ε induced dose-dependent cytotoxicity by activation of T lymphocytes against EOC cells, regardless of their histologic origin. The addition of PARPi to cell cultures enhanced pAXLxCD3ε cytotoxicity. Importantly, in vivo, pAXLxCD3ε was highly effective against EOC xenografts in two different NSG mouse models, by inhibiting the growth of tumor cells in ascites and subcutaneous xenografts. This effect translated into a significantly prolonged survival of treated animals. Conclusion pAXLxCD3ε is an active therapeutics against EOC cells providing a rational for its development as a novel agent in this still incurable disease. The preclinical validation of a first-in-class agent opens the way to the development of a new 14Fn3-based scaffold platform for the generation of innovative immune therapeutics against cancer

    TERRA G-quadruplex stabilization as a new therapeutic strategy for multiple myeloma

    No full text
    BackgroundMultiple myeloma (MM) is a hematologic malignancy characterized by high genomic instability, and telomere dysfunction is an important cause of acquired genomic alterations. Telomeric repeat-containing RNA (TERRA) transcripts are long non-coding RNAs involved in telomere stability through the interaction with shelterin complex. Dysregulation of TERRAs has been reported across several cancer types. We recently identified a small molecule, hit 17, which stabilizes the secondary structure of TERRA. In this study, we investigated in vitro and in vivo anti-MM activities of hit 17.MethodsAnti-proliferative activity of hit 17 was evaluated in different MM cell lines by cell proliferation assay, and the apoptotic process was analyzed by flow cytometry. Gene and protein expressions were detected by RT-qPCR and western blotting, respectively. Microarray analysis was used to analyze the transcriptome profile. The effect of hit 17 on telomeric structure was evaluated by chromatin immunoprecipitation. Further evaluation in vivo was proceeded upon NCI-H929 and AMO-1 xenograft models.ResultsTERRA G4 stabilization induced in vitro dissociation of telomeric repeat-binding factor 2 (TRF2) from telomeres leading to the activation of ATM-dependent DNA damage response, cell cycle arrest, proliferation block, and apoptotic death in MM cell lines. In addition, up-regulation of TERRA transcription was observed upon DNA damage and TRF2 loss. Transcriptome analysis followed by gene set enrichment analysis (GSEA) confirmed the involvement of the above-mentioned processes and other pathways such as E2F, MYC, oxidative phosphorylation, and DNA repair genes as early events following hit 17-induced TERRA stabilization. Moreover, hit 17 exerted anti-tumor activity against MM xenograft models.ConclusionOur findings provide evidence that targeting TERRA by hit 17 could represent a promising strategy for a novel therapeutic approach to MM

    A Novel Bispecific T-Cell Engager (CD1a x CD3ε) BTCE Is Effective against Cortical-Derived T Cell Acute Lymphoblastic Leukemia (T-ALL) Cells

    No full text
    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy burdened by poor prognosis. While huge progress of immunotherapy has recently improved the outcome of B-cell malignancies, the lack of tumor-restricted T-cell antigens still hampers its progress in T-ALL. Therefore, innovative immunotherapeutic agents are eagerly awaited. To this end, we generated a novel asymmetric (2 + 1) bispecific T-cell engager (BTCE) targeting CD1a and CD3ε (CD1a x CD3ε) starting from the development of a novel mAb named UMG2. UMG2 mAb reacts against CD1a, a glycoprotein highly expressed by cortical T-ALL cells. Importantly, no UMG2 binding was found on normal T-cells. CD1a x CD3ε induced high T-cell mediated cytotoxicity against CD1a+ T-ALL cells in vitro, as demonstrated by the concentration-dependent increase of T-cell proliferation, degranulation, induction of cell surface activation markers, and secretion of pro-inflammatory cytokines. Most importantly, in a PBMC-reconstituted NGS mouse model bearing human T-ALL, CD1a x CD3ε significantly inhibited the growth of human T-ALL xenografts, translating into a significant survival advantage of treated animals. In conclusion, CD1a x CD3ε is a novel BTCE highly active against CD1a-expressing cortical-derived T-ALL cells suitable for clinical development as an effective therapeutic option for this rare and aggressive disease
    corecore