8 research outputs found

    Doctoral Researchers in the Leibniz Association: Final Report of the 2017 Leibniz PhD Survey

    Get PDF
    This report provides for the first time a detailed quantitative description based on survey data of those doctoral researchers who work and perform their research at one of the 91 Leibniz Institutes and Research Museums. In November 2017, the Leibniz PhD Network sent out invitations via PhD representatives and works councils to the doctoral researchers within the Leibniz Institutes and Leibniz Research Museums to participate in the survey’s online questionnaire. The present report and the underlying survey are the products of a collaborative process within the Survey Working Group of the Leibniz PhD Network

    Emitter optimization for mono- and multicrystalline silicon : a study of emitter saturation currents

    No full text
    In this work the influence of varied diffusion parameters for an industrial open tube POCl3 diffusion furnace upon the emitter saturation current density on monocrystalline silicon is investigated. Further on, the effect of phosphorus gettering on multicrystalline silicon and on the sheet resistance on both mono- and multicrystalline silicon is under investigation. In addition, diffusion profiles are determined using the ECV (Electrochemical Capacitance Voltage) technique. Aim of this work is to enhance the performance of lowly doped emitters (80- 140 Ω/sq) applied in a photolithography based high efficiency solar cell process with special respect to defect-rich block cast multicrystalline silicon material. Understanding the influence of temperature, time and gas flow variations during the diffusion process is very important to enhance solar cell performance especially for mc silicon. For such materials the POCl3 gettering effect and the defect kinetics during the diffusion and the cool down phase after the diffusion are of major interest besides the reliable contact formation and low emitter saturation currents resulting in a good blue response of solar cells. The experiments performed in this work demonstrate that different mono- and multicrystalline silicon materials can benefit from adapted diffusion recipes in terms of significantly reduced emitter saturation currents and increased bulk lifetimes resulting in enhanced solar cell efficiencies

    Nickel plating on p+ silicon : a characterization of contact resistivity and line resistance

    No full text
    Nickel plating on p+ Si is a promising approach for the metallization of n-type Si solar cells. Ni acts as diffusion barrier for copper, which is used for thickening of the Ni contacts. In this work the adhesion and the contact resistivities of Ni plated lines on different boron emitters as well as the line resistances are evaluated. For that purpose, boron emitters with different sheet resistances on Czochralski n-type Si wafers are used. The dielectric passivation layer (SiNx) on top of the emitter is locally opened by photolithography or by laser ablation to perform a line structure, which is afterwards electroless Ni plated. During a sintering step, nickel silicide is formed to achieve the required adherence and contact resistivity to the Si. To improve the adherence of the Ni plated layer and therefore to decrease the contact resistivity, a plating process with two separated Ni plating steps, named “two-step Ni plating”, is introduced. With this process narrow and sharp lines (15-80 μm) with contact resistivities of about 0.6 mΩcm² are demonstrated. Using electrodeposition of Cu, line resistances of 0.45 Ω/cm are measured with line widths below 50 μm. This work demonstrates that the introduced plating technique is well suited for high efficient solar cell

    Manufacturing 100-µm-thick silicon solar cells with efficiencies greater than 20% in a pilot production line

    No full text
    Reducing wafer thickness while increasing power conversion efficiency is the most effective way to reduce cost per Watt of a silicon photovoltaic module. Within the European project 20 percent efficiency on less than 100-µm-thick, industrially feasible crystalline silicon solar cells (“20plµs”), we study the whole process chain for thin wafers, from wafering to module integration and life-cycle analysis. We investigate three different solar cell fabrication routes, categorized according to the temperature of the junction formation process and the wafer doping type: p-type silicon high temperature, n-type silicon high temperature and n-type silicon low temperature. For each route, an efficiency of 19.5% or greater is achieved on wafers less than 100 µm thick, with a maximum efficiency of 21.1% on an 80-µm-thick wafer. The n-type high temperature route is then transferred to a pilot production line, and a median solar cell efficiency of 20.0% is demonstrated on 100-µm-thick wafers

    Neolithic settlement sites in Western Turkey - palaeogeographic studies at cukurici Hoyuk and Arvalya Hoyuk

    No full text
    Cukurici Hoyuk and Arvalya Hoyuk are two prehistoric settlement mounds (tells) located in parallel striking valleys in the environs of Ephesus, W Turkey. They were studied with geoarchaeological methods in order to reconstruct their environmental setting, areal extension and distinct settlement phases, as well as the vegetation history. Both tells are situated on small ridges flanked by rivers and their alluvial plains which were suitable for cultivation. The Neolithic coastline was located at a distance of c. 15-2 km to the north. Cukurici Hoyuk covers an area of c. 200 m x 100 m; its strata have a total thickness of at least 8.50 m. The oldest remains, dating from the 7th millennium BC, represent an advanced Neolithic culture closely linked to the sea. The oldest foundations reveal that the site was intentionally chosen on the ridge within the still naturally wooded vegetated landscape. Other than Cukurici Hoyuk, Arvalya Hoyuk has not yet been excavated. However, geophysical measurements and corings revealed that it covers an area of c. 100 m x 60 m, and that it is constructed of several settlement layers with a total thickness of at least 3.50 m. Radar and geomagnetic images show building structures including fireplaces and pits, surrounded by a rampart-ditch construction as a potential enclosure. (C) 2015 Elsevier Ltd. All rights reserved

    Late Holocene coastline and landscape changes to the west of Ephesus, Turkey

    No full text
    Palaeogeographical research regarding coastline and landscape changes has been conducted in the Kucuk Menderes graben and the environs of the ancient city of Ephesus in Western Turkey for a few decades. Based on geophysical data, multi-proxy and microfaunal analyses of sediment cores, 14C-AMS age estimates and diagnostic ceramics, this study presents for the first time results of an area close to the present coastline, where a Byzantine church is located on top of a small hill. The results reveal that this mica schist hill turned into an island during the 2nd/1st millennium BCE. It was reconnected to the mainland via a tombolo during the 5th century CE. Drill cores and geophysical measurements surrounding the hill show massive stone layers which were deposited intentionally during the 5th/6th century CE when the Byzantine church was built. Geophysical images point to wall structures in the surroundings of the hill. The area to the northeast hosts a small harbour site. When the coastline continued to shift further to the west, this site was still connected to the sea by the Kucuk Menderes river. (C) 2017 Elsevier Ltd and INQUA. All rights reserved

    Evaluating the efficiency limits of low cost mc Si materials using advanced solar cell processes

    No full text
    The evaluation of the efficiency potential of Si materials for solar cell production is one key aspect for strategic decisions in today’s photovoltaic business. In this work a flexible photolithography-based cell process is presented which is in particular well-suited for defect-rich multicrystalline Si material. One decisive feature is the low overall thermal budget of the process since it is based on only one longer high-temperature step (the P diffusion) and a short firing step to obtain a decent hydrogen passivation from a hydrogen-rich PECVD (Plasma-Enhanced Chemical Vapor Deposition) SiNx:H layer. A further MIRHP (Microwave Induced Remote Hydrogen Plasma) step at a temperature below 400°C completes the hydrogen passivation of bulk defects. The process is derived from the standard photolithography based process at the University of Konstanz (UKN) and can easily be adapted to all kinds of dielectric rear side passivation patterns like a-Si, SiO2, SiCx and Al2O3 or stack systems. The rear side contact in this approach is established by Laser Fired Contacts (LFCs). Results presented in this work originate from a process based on an Al2O3 rear side passivation which is deposited at less than 200°C and subsequently annealed at about 400°C. Efficiencies above 18% on EFG and Calisolar polysilicon material, above 14% on RGS and above 20% on FZ reference material are demonstrated on 2 x 2 cm2 solar cells. For all mc-Si materials these efficiencies are very close to the highest efficiencies ever obtained by applying other already established high efficiency processes

    The European project 20Plµs : 20 percent efficiency on less than 100µm thick industrially feasible crystalline-Si solar cells

    No full text
    The European project 20plμs is developing Si wafer solar cells with efficiencies above 20% on wafers less than 100 μm thick. Three principal solar cell process routes are investigated. The three approaches are distinguished by the doping type and maximum process temperature: p-type monocrystalline Cz-Si and multicrystalline Si solar cells subjected to high temperature processes are called pht, and n-type Cz-Si cells fabricated with low and high temperature processes are called nlt and nht, respectively. Already at the project’s midterm, a particular pht solar cell process was transferred to pilot line production. Key issues such as wafering, surface passivation, light trapping, metallisation and life cycle analysis were tackled to determine which process should be transferred. To date, by integrating the processes investigated within the project into full solar cells, efficiencies up to 18.7% (pht), 19.0% (nht) and 20.8% (nlt, 4 cm2) have been achieved on 100 μm thick large area Si wafers
    corecore