6 research outputs found
Effect of Combination of Natural Dyes and the Blocking Layer on the Performance of DSSC
Over the years, researchers have been working on replacing sensitized dye for dye sensitized solar cells (DSSC), because of its low production cost, biodegradability, and non-toxicity. However, the overall performance of natural dye-based DSSCs is low compared to the DSSCs sensitized with Ruthenium based dyes. The combination of natural dyes with an optimized choice of the extracting solvents and the proper volume ratio of mixture of the dyes, enhances inherent properties, such as absorption and adsorption of the dyes. It also allows the device to utilize photon energy more efficiently over the entire visible wavelength. As a result, DSSC sensitized with the dye mixture shows higher absorbance, and cumulative absorption properties over the whole visible region than the DSSC fabricated with individual dyes and showed higher photocurrent. Another effective way to improve cell efficiency is by using a blocking layer. The blocking layer increases the photocurrent, is mainly due to the improvement of the electron recombination at the transparent conducting oxide/electrolyte interfaces. Also, the blocking layer’s compact structure creates an effective pathway for electron transportation; thus, the device’s photocurrent increases. Additionally, a slight improvement in the open-circuit voltage and fill factor was observed, thus cell efficiency enhances significantly. By both the proper ratio of dye mixture and the blocking layer improves cell performance of DSSC and opens a new pathway for future studies
Improvement of Efficiency of Dye Sensitized Solar Cells by Incorporating Carbon Nanotubes
Dye-sensitized solar cells (DSSCs) have aroused intense attention over the past three decades owing to their low cost, inexpensive raw materials, simple fabrication process, and employment of eco-friendly materials. Recently, to take advantage of their lower electrical resistance, excellent electrocatalytic operation, mechanical integrity, low cost, and flexibility, carbon nanotubes CNTs have been incorporated into DSSCs with a view to improve the efficiency further. CNT can be used in the anode, electrolyte, and counter electrode. The incorporation of CNTs into the anode’s semiconductor material decreases the host material’s resistance and increases thermal conductivity, electrical conductivity, mechanical strength, and durability. CNTs in ionic liquids have been investigated as a potential alternative for traditional liquid electrolytes for DSSC application because of low viscosity, low vapor pressure, high diffusion coefficient, high electrochemical, and thermal stability. CNT based counter electrode has attracted considerable interest because of its fast electron transfer kinetics and large surface area. This book chapter provides an insight into the fabrication of DSSCs by incorporating CNT and its effects on cell conversion efficiencies
Effect of gamma (Îł-) radiation on the opto-structural and morphological properties of green synthesized BaO nanoparticles using Moringa Oleifera leaves
In this current assessment, BaO synthesized from Moringa Oleifera leaves were irradiated using 0–75 kGy gamma radiation and investigated its physical impacts. The x-ray diffraction (XRD) data demonstrated the synthesis of tetragonal BaO, and no phase deviation was observed after irradiation. As doses are increased, the overall crystallite size were decreased due to an increase in defects and disorders. The tetragonal BaO was evident in Fourier transform infrared (FTIR) spectra prior to and following irradiation, while peak intensities and wavenumbers varied considerably. The as-prepared BaO showed a spherical shape morphology, and Field emission scanning electron microscopy (FESEM) indicated no vital deviations in it after irradiation. As irradiation shifts from 0 to 75 kGy, optical bandgap was increased from 4.55 to 4.93 eV, evaluated using Kubelka-Munk (K-M) equation from UV–vis–NIR spectrophotometer. Opto-electronic and photonic devices have challenges in extreme radiation conditions, such as space and nuclear environments. So, these assessments suggested that BaO can withstand high levels of gamma photon and could be a good option for photonic and optoelectronic instruments in an extreme gamma-ray exposed conditions
Data_Sheet_1_Unveiling chlorpyrifos mineralizing and tomato plant-growth activities of Enterobacter sp. strain HSTU-ASh6 using biochemical tests, field experiments, genomics, and in silico analyses.docx
The chlorpyrifos-mineralizing rice root endophyte Enterobacter sp. HSTU-ASh6 strain was identified, which enormously enhanced the growth of tomato plant under epiphytic conditions. The strain solubilizes phosphate and grew in nitrogen-free Jensen’s medium. It secreted indole acetic acid (IAA; 4.8 mg/mL) and ACC deaminase (0.0076 μg/mL/h) and hydrolyzed chlorpyrifos phosphodiester bonds into 3,5,6-trichloro-2-pyridinol and diethyl methyl-monophosphate, which was confirmed by Gas Chromatography – Tandem Mass Spectrometry (GC–MS/MS) analysis. In vitro and in silico (ANI, DDH, housekeeping genes and whole genome phylogenetic tree, and genome comparison) analyses confirmed that the strain belonged to a new species of Enterobacter. The annotated genome of strain HSTU-ASh6 revealed a sets of nitrogen-fixing, siderophore, acdS, and IAA producing, stress tolerance, phosphate metabolizing, and pesticide-degrading genes. The 3D structure of 28 potential model proteins that can degrade pesticides was validated, and virtual screening using 105 different pesticides revealed that the proteins exhibit strong catalytic interaction with organophosphorus pesticides. Selected docked complexes such as α/β hydrolase–crotoxyphos, carboxylesterase–coumaphos, α/β hydrolase–cypermethrin, α/β hydrolase–diazinon, and amidohydrolase–chlorpyrifos meet their catalytic triads in visualization, which showed stability in molecular dynamics simulation up to 100 ns. The foliar application of Enterobacter sp. strain HSTU-ASh6 on tomato plants significantly improved their growth and development at vegetative and reproductive stages in fields, resulting in fresh weight and dry weight was 1.8–2.0-fold and 1.3–1.6-fold higher in where urea application was cut by 70%, respectively. Therefore, the newly discovered chlorpyrifos-degrading species Enterobacter sp. HSTU-ASh6 could be used as a smart biofertilizer component for sustainable tomato cultivation.</p