4 research outputs found
Exciton condensation and charge fractionalization in a topological insulator film
An odd number of gapless Dirac fermions is guaranteed to exist at a surface
of a strong topological insulator. We show that in a thin-film geometry and
under external bias, electron-hole pairs that reside in these surface states
can condense to form a coherent exciton condensate, similar in general terms to
the exciton condensate recently argued to exist in a biased graphene bilayer,
but with different topological properties. Such a `topological' exciton
condensate (TEC) exhibits a host of unusual properties; the most interesting
among them is the fractional charge +-e/2 carried by a singly quantized vortex
in the TEC order parameter.Comment: 4 pages, 1 figure, version to appear in PRL (minor stylistic
changes). For related work and info visit http://www.physics.ubc.ca/~franz
Excitonic condensation in a double-layer graphene system
The possibility of excitonic condensation in a recently proposed electrically
biased double-layer graphene system is studied theoretically. The main emphasis
is put on obtaining a reliable analytical estimate for the transition
temperature into the excitonic state. As in a double-layer graphene system the
total number of fermionic "flavors" is equal to N=8 due to two projections of
spin, two valleys, and two layers, the large- approximation appears to be
especially suitable for theoretical investigation of the system. On the other
hand, the large number of flavors makes screening of the bare Coulomb
interactions very efficient, which, together with the suppression of
backscattering in graphene, leads to an extremely low energy of the excitonic
condensation. It is shown that the effect of screening on the excitonic pairing
is just as strong in the excitonic state as it is in the normal state. As a
result, the value of the excitonic gap \De is found to be in full agreement
with the previously obtained estimate for the mean-field transition temperature
, the maximum possible value ( is the Fermi energy) of both being in
range for a perfectly clean system. This proves that the energy scale really sets the upper bound for the transition temperature
and invalidates the recently expressed conjecture about the high-temperature
first-order transition into the excitonic state. These findings suggest that,
unfortunately, the excitonic condensation in graphene double-layers can hardly
be realized experimentally.Comment: 21 pages, 5 figures, invited paper to Graphene special issue in
Semiconductor Science and Technolog
Excitonic condensation in a double-layer graphene system
The possibility of excitonic condensation in a recently proposed electrically
biased double-layer graphene system is studied theoretically. The main emphasis
is put on obtaining a reliable analytical estimate for the transition
temperature into the excitonic state. As in a double-layer graphene system the
total number of fermionic "flavors" is equal to N=8 due to two projections of
spin, two valleys, and two layers, the large- approximation appears to be
especially suitable for theoretical investigation of the system. On the other
hand, the large number of flavors makes screening of the bare Coulomb
interactions very efficient, which, together with the suppression of
backscattering in graphene, leads to an extremely low energy of the excitonic
condensation. It is shown that the effect of screening on the excitonic pairing
is just as strong in the excitonic state as it is in the normal state. As a
result, the value of the excitonic gap \De is found to be in full agreement
with the previously obtained estimate for the mean-field transition temperature
, the maximum possible value ( is the Fermi energy) of both being in
range for a perfectly clean system. This proves that the energy scale really sets the upper bound for the transition temperature
and invalidates the recently expressed conjecture about the high-temperature
first-order transition into the excitonic state. These findings suggest that,
unfortunately, the excitonic condensation in graphene double-layers can hardly
be realized experimentally.Comment: 21 pages, 5 figures, invited paper to Graphene special issue in
Semiconductor Science and Technolog
Excitonic condensation in a double-layer graphene system
The possibility of excitonic condensation in a recently proposed electrically
biased double-layer graphene system is studied theoretically. The main emphasis
is put on obtaining a reliable analytical estimate for the transition
temperature into the excitonic state. As in a double-layer graphene system the
total number of fermionic "flavors" is equal to N=8 due to two projections of
spin, two valleys, and two layers, the large- approximation appears to be
especially suitable for theoretical investigation of the system. On the other
hand, the large number of flavors makes screening of the bare Coulomb
interactions very efficient, which, together with the suppression of
backscattering in graphene, leads to an extremely low energy of the excitonic
condensation. It is shown that the effect of screening on the excitonic pairing
is just as strong in the excitonic state as it is in the normal state. As a
result, the value of the excitonic gap \De is found to be in full agreement
with the previously obtained estimate for the mean-field transition temperature
, the maximum possible value ( is the Fermi energy) of both being in
range for a perfectly clean system. This proves that the energy scale really sets the upper bound for the transition temperature
and invalidates the recently expressed conjecture about the high-temperature
first-order transition into the excitonic state. These findings suggest that,
unfortunately, the excitonic condensation in graphene double-layers can hardly
be realized experimentally.Comment: 21 pages, 5 figures, invited paper to Graphene special issue in
Semiconductor Science and Technolog