4 research outputs found

    Conal Distances Between Rational Spectral Densities

    Get PDF
    This paper generalizes Thompson and Hilbert metrics to the space of spectral densities. The resulting complete metric space has the differentiable structure of a Finsler manifold with explicit geodesics. The corresponding distances are filtering invariant, can be computed efficiently, and admit geodesic paths that preserve rationality; these are properties of fundamental importance in many engineering applications.European Research Counci

    Conal Distances Between Rational Spectral Densities

    No full text
    This paper generalizes Thompson and Hilbert metrics to the space of spectral densities. The resulting complete metric space has the differentiable structure of a Finsler manifold with explicit geodesics. The corresponding distances are filtering invariant, can be computed efficiently, and admit geodesic paths that preserve rationality; these are properties of fundamental importance in many engineering applications

    Conal Distances Between Rational Spectral Densities

    No full text
    The paper generalizes Thompson and Hilbert metric to the space of spectral densities. The resulting complete metric space has the differentiable structure of a Finsler manifold with explicit geodesics. The corresponding distances are filtering invariant, can be computed efficiently, and admit geodesic paths that preserve rationality; these are properties of fundamental importance in many engineering applications
    corecore