228 research outputs found
Selecting and Testing Cryptogam Species for Use in Wetland Delineation in Alaska
To support the determination of hydrophytic vegetation in wetland delineations in Alaska, USA, a series of tests were conducted to develop a group of “test positive” species to be used in a “cryptogam indicator.” In 2004, non-vascular cryptogam species (bryophytes, lichens, and fungi) from Interior and South-Central Alaska in the vicinities of Fairbanks and Anchorage were collected at a series of ten 50 × 50 cm plots along two 30 m transects in each of six upland and five wetland sites. Nineteen moss and liverwort species were selected from 86 species surveyed to test for wetland fidelity. In 2005, a plot-based analysis of frequency and cover data yielded a revised list of 17 bryophyte species that were specific to wetland communities dominated by black spruce, Picea mariana (P. Mill.) B.S.P. Fungi and lichens were found to be inadequate wetland indicators in the sampled locations because the lichen species were sparsely distributed and the fungi were too ephemeral. The cryptogam indicator was thus restricted to bryophytes. Also in 2005, bryophytes were analyzed for their presence on microtopographic positions within the landscape, including tops of hummocks and hollows at the bases of hummocks. Upland bryophyte species were found on hummock tops inside the wetland boundary, but were not abundant in the hollows (p < 0.05). The fidelity of the species selected for use in the cryptogam indicator was tested. It was determined that if more than 50% of all bryophyte cover present in hollows is composed of one or more of the 17 wetland bryophytes tested in 2005, then vascular vegetation can be considered to be hydrophytic (p < 0.001).Afin d’étayer la présence de végétation hydrophytique dans les délimitations de zones humides de l’Alaska, aux États-Unis, une série de tests a été effectuée dans le but d’aboutir à un groupe d’espèces « de test positives » à utiliser avec un « indicateur de sporophyte ». En 2004, des espèces de sporophytes non vasculaires (bryophytes, lichens et champignons) de l’intérieur et du centre-sud de l’Alaska, aux environs de Fairbanks et d’Anchorage, ont été recueillies à une série de dix parcelles de 50 sur 50 cm le long de deux transects de 30 m dans chacun de six sites montagnards et de cinq sites humides. Dix-neuf espèces de mousse et d’hépatiques ont été choisies à partir de 86 espèces prélevées dans le but d’en déterminer la fidélité aux zones humides. En 2005, une analyse de fréquence de parcelles et des données de couverture ont permis d’obtenir la liste révisée de 17 espèces de bryophytes propres aux zones humides dominées par l’épinette noire, Picea mariana (P. Mill.) B.S.P. Nous avons constaté que les champignons et les lichens étaient des indicateurs de zones humides inadéquats aux sites échantillonnés parce que les espèces de lichen étaient réparties maigrement et que les champignons étaient trop éphémères. Par conséquent, l’indicateur de sporophytes a été restreint aux bryophytes. Également en 2005, nous avons analysé les bryophytes afin d’en déterminer la présence à des positions microtopographiques du paysage, ce qui comprenait le sommet de hummocks et les creux à la base de hummocks. Des espèces de bryophytes montagnardes ont été décelées aux sommets de hummocks à l’intérieur de la limite des zones humides, mais celles-ci n’abondaient pas dans les creux (p < 0.05). La fidélité des espèces choisies afin d’être utilisées dans l’indicateur de sporophytes a été testée. Nous avons déterminé que si plus de 50 % de toute la couverture de bryophyte présente dans les creux est composée de l’une ou plusieurs des 17 bryophytes de zones humides testées en 2005, la végétation vasculaire peut alors être considérée comme hydrophytique (p < 0,001)
Reliability and accuracy of straightforward measurements for liver volume determination in ultrasound and computed tomography compared to real volumetry
To evaluate the suitability of volume index measurement (VI) by either ultrasound (US) or computed tomography (CT) for the assessment of liver volume. Fifty-nine patients, 21 women, with a mean age of 66.8 ± 12.6 years underwent US of the liver followed immediately by abdominal CT. In US and CT imaging dorsoventral, mediolateral and craniocaudal liver diameters in their maximum extensions were assessed by two observers. VI was calculated by multiplication of the diameters divided by a constant (3.6). The liver volume determined by a manual segmentation in CT (“true liver volume”) served as gold standard. True liver volume and calculated VI determined by US and CT were compared using Bland–Altman analysis. Mean differences of VI between observers were − 34.7% (− 90.1%; 20.7%) for the US-based and 1.1% (− 16.1%; 18.2%) for the CT-based technique, respectively. Liver volumes determined by semi-automated segmentation, US-based VI and CT-based VI, were as follows: 1.500 ± 347cm3; 863 ± 371cm3; 1.509 ± 432cm3. Results showed a great discrepancy between US-based VI and true liver volume with a mean bias of 58.3 ± 66.9%, and high agreement between CT-based VI and true liver volume with a low mean difference of 4.4 ± 28.3%. Volume index based on CT diameters is a reliable, fast and simple approach for estimating liver volume and can therefore be recommended for clinical practice. The usage of US-based volume index for assessment of liver volume should not be used due to its low accuracy of US in measurement of liver diameters
Patient Outcomes at Twelve Months after Early Decompressive Craniectomy for Diffuse Traumatic Brain Injury in the Randomized DECRA Clinical Trial
Functional outcomes at 12 months were a secondary outcome of the randomized DECRA trial of early decompressive craniectomy for severe diffuse traumatic brain injury (TBI) and refractory intracranial hypertension. In the DECRA trial, patients were randomly allocated 1:1 to either early decompressive craniectomy or intensive medical therapies (standard care). We conducted planned secondary analyses of the DECRA trial outcomes at 6 and 12 months, including all 155 patients. We measured functional outcome using the Glasgow Outcome Scale-Extended (GOS-E). We used ordered logistic regression, and dichotomized the GOS-E using logistic regression, to assess outcomes in patients overall and in survivors. We adjusted analyses for injury severity using the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) model. At 12 months, the odds ratio (OR) for worse functional outcomes in the craniectomy group (OR 1.68; 95% confidence interval [CI]: 0.96-2.93; p = 0.07) was no longer significant. Unfavorable functional outcomes after craniectomy were 11% higher (59% compared with 48%), but were not significantly different from standard care (OR 1.58; 95% CI: 0.84-2.99; p = 0.16). Among survivors after craniectomy, there were fewer good (OR 0.33; 95% CI: 0.12-0.91; p = 0.03) and more vegetative (OR 5.12; 95% CI: 1.04-25.2; p = 0.04) outcomes. Similar outcomes in survivors were found at 6 months after injury. Vegetative (OR 5.85; 95% CI: 1.21-28.30; p = 0.03) and severely disabled outcomes (OR 2.49; 95% CI: 1.21-5.11; p = 0.01) were increased. Twelve months after severe diffuse TBI and early refractory intracranial hypertension, decompressive craniectomy did not improve outcomes and increased vegetative survivors
Подсистема автономного программно-аппаратного комплекса для индуктивного долгосрочного прогноза осредненных значений метеопараметров
The research of the inductive method of long-term (forestalling to 0,5 year) prognosis of average decade air s temperature on the basis of principle of analogies was executed and it s sufficient was shown. The research of the offered approach was also conducted: in the base of spatial models without principle of analogies; in the polynomial harmonic base; the analysis of middle quality of the inductive prognostic method for cases of the analogue principle usage and without it
Aligning agri-environmental subsidies and environmental needs: A comparative analysis between the US and EU
The global recognition of modern agricultural practices' impact on the environment has fuelled policy responses to ameliorate environmental degradation in agricultural landscapes. In the US and the EU, agri-environmental subsidies (AES) promote widespread adoption of sustainable practices by compensating farmers who voluntarily implement them on working farmland. Previous studies, however, have suggested limitations of their spatial targeting, with funds not allocated towards areas of the greatest environmental need. We analysed AES in the US and EU –specifically through the Environmental Quality Incentives Program (EQIP) and selected measures of the European Agricultural Fund for Rural Development (EAFRD)– to identify if AES are going where they are most needed to achieve environmental goals, using a set of environmental need indicators, socio-economic variables moderating allocation patterns, and contextual variables describing agricultural systems. Using linear mixed models and linear models we explored the associations among AES allocation and these predictors at different scales. We found that higher AES spending was associated with areas of low soil organic carbon and high greenhouse gas emissions both in the US and EU, and nitrogen surplus in the EU. More so than successes, however, clear mismatches of funding and environmental need emerged – AES allocation did not successfully target areas of highest water stress, biodiversity loss, soil erosion, and nutrient runoff. Socio-economic and agricultural context variables may explain some of these mismatches; we show that AES were allocated to areas with higher proportions of female producers in the EU but not in the US, where funds were directed towards areas with less tenant farmers. Moreover, we suggest that the potential for AES to remediate environmental issues may be curtailed by limited participation in intensive agricultural landscapes. These findings can help inform refinements to EQIP and EAFRD allocation mechanisms and identify opportunities for improving future targeting of AES spending
Spatial and Temporal Trends of Global Pollination Benefit
Pollination is a well-studied and at the same time a threatened ecosystem service. A significant part of global crop production depends on or profits from pollination by animals. Using detailed information on global crop yields of 60 pollination dependent or profiting crops, we provide a map of global pollination benefits on a 5′ by 5′ latitude-longitude grid. The current spatial pattern of pollination benefits is only partly correlated with climate variables and the distribution of cropland. The resulting map of pollination benefits identifies hot spots of pollination benefits at sufficient detail to guide political decisions on where to protect pollination services by investing in structural diversity of land use. Additionally, we investigated the vulnerability of the national economies with respect to potential decline of pollination services as the portion of the (agricultural) economy depending on pollination benefits. While the general dependency of the agricultural economy on pollination seems to be stable from 1993 until 2009, we see increases in producer prices for pollination dependent crops, which we interpret as an early warning signal for a conflict between pollination service and other land uses at the global scale. Our spatially explicit analysis of global pollination benefit points to hot spots for the generation of pollination benefits and can serve as a base for further planning of land use, protection sites and agricultural policies for maintaining pollination services
- …