5 research outputs found

    On genuine invariance learning without weight-tying

    Full text link
    In this paper, we investigate properties and limitations of invariance learned by neural networks from the data compared to the genuine invariance achieved through invariant weight-tying. To do so, we adopt a group theoretical perspective and analyze invariance learning in neural networks without weight-tying constraints. We demonstrate that even when a network learns to correctly classify samples on a group orbit, the underlying decision-making in such a model does not attain genuine invariance. Instead, learned invariance is strongly conditioned on the input data, rendering it unreliable if the input distribution shifts. We next demonstrate how to guide invariance learning toward genuine invariance by regularizing the invariance of a model at the training. To this end, we propose several metrics to quantify learned invariance: (i) predictive distribution invariance, (ii) logit invariance, and (iii) saliency invariance similarity. We show that the invariance learned with the invariance error regularization closely reassembles the genuine invariance of weight-tying models and reliably holds even under a severe input distribution shift. Closer analysis of the learned invariance also reveals the spectral decay phenomenon, when a network chooses to achieve the invariance to a specific transformation group by reducing the sensitivity to any input perturbation

    Contextualised Browsing in a Digital Library's Living Lab

    Full text link
    Contextualisation has proven to be effective in tailoring \linebreak search results towards the users' information need. While this is true for a basic query search, the usage of contextual session information during exploratory search especially on the level of browsing has so far been underexposed in research. In this paper, we present two approaches that contextualise browsing on the level of structured metadata in a Digital Library (DL), (1) one variant bases on document similarity and (2) one variant utilises implicit session information, such as queries and different document metadata encountered during the session of a users. We evaluate our approaches in a living lab environment using a DL in the social sciences and compare our contextualisation approaches against a non-contextualised approach. For a period of more than three months we analysed 47,444 unique retrieval sessions that contain search activities on the level of browsing. Our results show that a contextualisation of browsing significantly outperforms our baseline in terms of the position of the first clicked item in the result set. The mean rank of the first clicked document (measured as mean first relevant - MFR) was 4.52 using a non-contextualised ranking compared to 3.04 when re-ranking the result lists based on similarity to the previously viewed document. Furthermore, we observed that both contextual approaches show a noticeably higher click-through rate. A contextualisation based on document similarity leads to almost twice as many document views compared to the non-contextualised ranking.Comment: 10 pages, 2 figures, paper accepted at JCDL 201

    LieGG: Studying Learned Lie Group Generators

    Get PDF
    Symmetries built into a neural network have appeared to be very beneficial for a wide range of tasks as it saves the data to learn them. We depart from the position that when symmetries are not built into a model a priori, it is advantageous for robust networks to learn symmetries directly from the data to fit a task function. In this paper, we present a method to extract symmetries learned by a neural network and to evaluate the degree to which a network is invariant to them. With our method, we are able to explicitly retrieve learned invariances in a form of the generators of corresponding Lie-groups without prior knowledge of symmetries in the data. We use the proposed method to study how symmetrical properties depend on a neural network's parameterization and configuration. We found that the ability of a network to learn symmetries generalizes over a range of architectures. However, the quality of learned symmetries depends on the depth and the number of parameters
    corecore