18 research outputs found
Protocol to perform pressurized blister tests on thin elastic films
This work aims to identify common challenges in the preparation of the
blister test devices designed for measurement of energy release rate for
brittle thin films and to propose easy-to-implement solutions accordingly. To
this end, we provide a step-by-step guide for fabricating a blister test device
comprised of thin polystyrene films adhered to glass substrates. Thin films are
first transferred from donor substrates to an air-water interface, which is
then used as a platform to locate them on a receiver substrate. We embed a
microchannel at the back of the device to evacuate the air trapped in the
opening, through which the pressure is applied. We quantify the height and the
radius of the blister to estimate the adhesion energy using the available
expressions correlating the normal force and the moment with the shape of the
blister. The present blister test provided adhesion energy per unit area of \mbox{mJ}/{\mbox m}^2 for polystyrene on glass, which is in good
agreement with the measurement of \mbox{mJ}/{\mbox m}^2 found
in our independent cleavage test
A micro particle shadow velocimetry (μPSV) technique to measure flows in microchannels
A micro particle shadow velocimetry (μPSV) system based on back-lit illumination and forward scatter observation of light from non-fluorescent particles has been developed. Relatively high luminous efficiencies and particle image contrasts were achieved by using the condenser stage of a standard transmitted light microscope and a continuous incoherent collimated light emitting diode (LED). This paper includes a critical review of the operating principles, benefits and practical problems associated with the predominant epifluorescent micro particle image velocimetry (μPIV) technique, and the less common light scatteringμPIV methods of whichμPSV is a development. ThisμPSV system was then successfully used to measure axial velocity profiles in a 280-μm-diameter circular channel up to a Reynolds number of 50 which corresponds to peak velocities of around 0.4 m/s. These velocity profiles were then integrated to provide instantaneous flow rates on the order of 100μl/min to an accuracy of±5% relative to average flow rates determined using a digital balance. Due to the incoherent nature of the LED light source, the back-lit forward scatter observation mode and the applied refractive index matching system, the location of the test section walls and thus the local velocity fields were also accurately obtained. As a result of this,μPSV provides a low cost and safe way to investigate microfluidics, especially in lab-on-a-chip applications where the necessary optical access through transparent test sections is often availabl
Water-based peeling of thin hydrophobic films
Inks of permanent markers and water-proof cosmetics create elastic thin films
upon application on a surface. Such adhesive materials are deliberately
designed to exhibit water-repellent behavior. Therefore, patterns made up of
these inks become resistant to moisture and cannot be cleaned by water after
drying. However, we show that sufficiently slow dipping of such elastic films,
which are adhered to a substrate, into a bath of pure water allows complete
removal of the hydrophobic coatings. Upon dipping, the air-water interface in
the bath forms a contact line on the substrate, which exerts a
capillary-induced peeling force at the edge of the hydrophobic thin film. We
highlight that this capillary peeling process is more effective at lower
velocities of the air-liquid interface and lower viscosities. Capillary peeling
not only removes such thin films from the substrate but also transfers them
flawlessly onto the air-water interface
Sudden expansions in circular microchannels: flow dynamics and pressure drop
Microparticle shadow velocimetry is used to study the flow of water through microcircular sudden expansions of ratios e=1.51 and e=1.96 for inlet Reynolds numbers Re d<120. Such flows give rise to annular vortices, trapped downstream of the expansions. The dependency of the vortex length on the Reynolds number Re d and the expansion ratio e is experimentally investigated in this study. Additionally, the shape of the axisymmetric annular vortex is quantified based on the visualization results. These measurements favorably follow the trends reported for larger scales in the literature. Redevelopment of the confined jet to the fully developed Poiseuille flow downstream of the expansion is also studied quantitatively. Furthermore, the experimentally resolved velocities are used to calculate high resolution static pressure gradient distributions along the channel walls. These measurements are then integrated into the axisymmetric momentum and energy balance equations, for the flow downstream of the expansion, to obtain the irreversible pressure drop in this geometry. As expected, the measured pressure drop coefficients for the range of Reynolds numbers studied here do not match the predictions of the available empirical correlations, which are commonly based turbulent flow studies. However, these results are in excellent agreement with previous numerical calculations. The pressure drop coefficient is found to strongly depend on the inlet Reynolds number for Re d<50. Although no length-scale effect is observed for the range of channel diameters studied here, for Reynolds numbers Re d<50, which are typical in microchannel applications, complex nonlinear trends in the flow dynamics and pressure drop measurements are discovered and discussed in this work
A micro particle shadow velocimetry (mu PSV) technique to measure flows in microchannels
A micro particle shadow velocimetry (mu PSV) system based on back-lit illumination and forward scatter observation of light from non-fluorescent particles has been developed. Relatively high luminous efficiencies and particle image contrasts were achieved by using the condenser stage of a standard transmitted light microscope and a continuous incoherent collimated light emitting diode (LED). This paper includes a critical review of the operating principles, benefits and practical problems associated with the predominant epifluorescent micro particle image velocimetry (mu PIV) technique, and the less common light scattering mu PIV methods of which mu PSV is a development. This mu PSV system was then successfully used to measure axial velocity profiles in a 280-mu m-diameter circular channel up to a Reynolds number of 50 which corresponds to peak velocities of around 0.4 m/s. These velocity profiles were then integrated to provide instantaneous flow rates on the order of 100 mu l/min to an accuracy of +/- 5 % relative to average flow rates determined using a digital balance. Due to the incoherent nature of the LED light source, the back-lit forward scatter observation mode and the applied refractive index matching system, the location of the test section walls and thus the local velocity fields were also accurately obtained. As a result of this, mu PSV provides a low cost and safe way to investigate microfluidics, especially in lab-on-a-chip applications where the necessary optical access through transparent test sections is often available
Micellar structure and transformations in sodium alkylbenzenesulfonate (NaLAS) aqueous solutions: effects of concentration, temperature, and salt
We investigate the shape, dimensions, and transformation pathways of micelles of linear sodium alkylbenzenesulfonate (NaLAS), a common anionic surfactant, in aqueous solution. Employing Small Angle Neutron Scattering (SANS) and surface tensiometry, we quantify the effects of surfactant concentration (0.6–15 wt%), temperature (5–40 °C) and added salt (≤0.35 M Na2SO4). Spherical micelles form at low NaLAS (≤2.6 wt%) concentration in water, and become elongated with increasing concentration and decreasing temperature. Addition of salt reduces the critical micelle concentration (CMC) and thus promotes the formation of micelles. At fixed NaLAS concentration, salt addition causes spherical micelles to grow into cylindrical micelles, and then multilamellar vesicles (MLVs), which we examine by SANS and cryo-TEM. Above a threshold salt concentration, the MLVs reach diameters of 100 s of nm to few μm, eventually causing precipitation. While the salt concentrations associated with the micelle-to-cylinder transformation increase only slightly with temperature, those required for the cylinder-to-MLV transformation exhibit a pronounced, linear temperature dependence, which we examine in detail. Our study establishes a solution structure map for this model anionic surfactant in water, quantifying the combined roles of concentration, temperature and salt, at practically relevant conditions
Sudden expansions in circular microchannels: flow dynamics and pressure drop
Micro particle shadow velocimetry is used to study the flow of water through microcircular sudden expansions of ratios e = 1.51 and e = 1.96 for inlet Reynolds numbers Re (d) < 120. Such flows give rise to annular vortices, trapped downstream of the expansions. The dependency of the vortex length on the Reynolds number Re (d) and the expansion ratio e is experimentally investigated in this study. Additionally, the shape of the axisymmetric annular vortex is quantified based on the visualization results. These measurements favorably follow the trends reported for larger scales in the literature. Redevelopment of the confined jet to the fully developed Poiseuille flow downstream of the expansion is also studied quantitatively. Furthermore, the experimentally resolved velocities are used to calculate high resolution static pressure gradient distributions along the channel walls. These measurements are then integrated into the axisymmetric momentum and energy balance equations, for the flow downstream of the expansion, to obtain the irreversible pressure drop in this geometry. As expected, the measured pressure drop coefficients for the range of Reynolds numbers studied here do not match the predictions of the available empirical correlations, which are commonly based turbulent flow studies. However, these results are in excellent agreement with previous numerical calculations. The pressure drop coefficient is found to strongly depend on the inlet Reynolds number for Re (d) < 50. Although no length-scale effect is observed for the range of channel diameters studied here, for Reynolds numbers Re (d) < 50, which are typical in microchannel applications, complex nonlinear trends in the flow dynamics and pressure drop measurements are discovered and discussed in this work
Dynamics of isolated confined air bubbles in liquid flows through circular microchannels: an experimental and numerical study
Experimental and numerical studies are performed to characterise the dynamics of isolated confined air bubbles in laminar fully developed liquid flows within channels of diameters d = 0.5 mm and d = 1 mm. Water and glycerol are used as the continuous liquid phase, and therefore, a large range of flow capillary numbers 10(-4) < Ca < 10(-1) and Reynolds numbers 10(-3) < Re < 10(3) are covered. An extensive investigation is performed on the effect of bubble size and flow capillary number on different flow parameters, such as the shape and velocity of bubbles, thickness of the liquid film formed between the bubbles and the channel wall, and the development lengths in front and at the back of the bubbles. The micro-particle shadow velocimetry technique (mu PSV) is employed in the experimental measurements allowing simultaneous quantification of important flow parameters using a single sequence of high-speed greyscale images recorded at each test condition. Bubble volume and flow rate of the continuous liquid phase are precisely determined in the post-processing stage using the mu PSV images. These parameters are then used as initial and boundary conditions to set up CFD simulations reproducing the corresponding two-phase flow. Simulations based on the volume of fluid technique with the aim of capturing the interface dynamics are performed with both ANSYS Fluent v. 14.5, here augmented by implementing self-defined functions to improve the accuracy of the surface tension force estimation, and ESI OpenFOAM v. 2.1.1. The present approach not only results in valuable findings on the underlying physics involved in the problem of interest but also allows us to directly compare and validate results that are currently obtained by the experimental and computational methods. It is believed that similar methodology can be employed to rigorously investigate more complex two-phase flow regimes in micro-geometries