48 research outputs found

    General Terms

    No full text
    Peer-to-peer file-sharing networks are currently receiving much attention as a means of sharing and distributing information. However, as recent experience shows, the anonymous, open nature of these networks offers an almost ideal environment for the spread of self-replicating inauthentic files. We describe an algorithm to decrease the number of downloads of inauthentic files in a peer-to-peer file-sharing network that assigns each peer a unique global trust value, based on the peer’s history of uploads. We present a distributed and secure method to compute global trust values, based on Power iteration. By having peers use these global trust values to choose the peers from whom they download, the network effectively identifies malicious peers and isolates them from the network. In simulations, this reputation system, called EigenTrust, has been shown to significantly decrease the number of inauthentic files on the network, even under a variety of conditions where malicious peers cooperate in an attempt to deliberately subvert the system

    Spectral Learning

    No full text
    We present a simple, easily implemented spectral learning algorithm that applies equally whether we have no supervisory information, pairwise link constraints, or labeled examples. In the unsupervised case, it performs consistently with other spectral clustering algorithms. In the supervised case, our approach achieves high accuracy on the categorization of thousands of documents given only a few dozen labeled training documents for the 20 Newsgroups data set. Furthermore, its classification accuracy increases with the addition of unlabeled documents, demonstrating effective use of unlabeled data
    corecore