61 research outputs found

    Polycystin-1 Expression in Fetal, Adult and Autosomal Dominant Polycystic Kidney

    Get PDF
    The mutation of the PKD1 gene causes autosomal dominant polycystic kidney disease (ADPKD), and the PKD1 gene encodes polycystin-1 (PC-1). PC-1 is thought to be a cell-cell/matrix adhesion receptor molecule at the cell surface that is widely expressed in the kidney. However, there are controversies about the role of PC-1 protein and its expression when using different antibodies to detect it. We used two PC-1 antibodies; C-20 (Santa Cruz, sc-10372) as the C-terminal antibody, and P-15 (Santa Cruz, sc-10307) as the N-terminal antibody. We evaluated the PC-1 expression by performing immunoblotting on the human embryonic kidney (HEK) 293 cells and the renal proximal tubular epithelial cell (RPTEC) lysates. We characterized the expression of PC-1 in the fetal, adult and polycystic kidneys tissues by performing immunohistochemistry. We confirmed the PC-1 expression in the HEK 293 cells and the RPTEC lysates, but the expression was very low. The PC-1 proteins were diffusely expressed in the tubular epithelial cells cytoplasm in the fetal and adult kidneys, and the PC-1 expression was more prominent in the proximal tubules of the fetal kidney. In the ADPKD kidney, the PC-1 proteins were heterogenously and weakly expressed in the tubular or cyst lining epithelial cells. Our data suggests that the development of the kidney may regulate the expression of PC-1, and an altered PC-1 expression may contribute to cyst formation in ADPKD

    Enhanced A-FABP expression in visceral fat: potential contributor to the progression of NASH

    Get PDF
    Background/AimsAdipose tissue is an active endocrine organ that secretes various metabolically important substances including adipokines, which represent a link between insulin resistance and nonalcoholic steatohepatitis (NASH). The factors responsible for the progression from simple steatosis to steatohepatitis remain elusive, but adipokine imbalance may play a pivotal role. We evaluated the expressions of adipokines such as visfatin, adipocyte-fatty-acid-binding protein (A-FABP), and retinol-binding protein-4 (RBP-4) in serum and tissue. The aim was to discover whether these adipokines are potential predictors of NASH.MethodsPolymerase chain reaction, quantification of mRNA, and Western blots encoding A-FABP, RBP-4, and visfatin were used to study tissue samples from the liver, and visceral and subcutaneous adipose tissue. The tissue samples were from biopsy specimens obtained from patients with proven NASH who were undergoing laparoscopic cholecystectomy due to gallbladder polyps.ResultsPatients were classified into two groups: NASH, n=10 and non-NASH, n=20 according to their nonalcoholic fatty liver disease Activity Score. Although serum A-FABP levels did not differ between the two groups, the expressions of A-FABP mRNA and protein in the visceral adipose tissue were significantly higher in NASH group than in non-NASH group (104.34 vs. 97.05, P<0.05, and 190.01 vs. 95.15, P<0.01, respectively). Furthermore, the A-FABP protein expression ratio between visceral adipose tissue and liver was higher in NASH group than in non-NASH group (4.38 vs. 1.64, P<0.05).ConclusionsNASH patients had higher levels of A-FABP expression in their visceral fat compared to non-NASH patients. This differential A-FABP expression may predispose patients to the progressive form of NASH

    Exendin-4 Improves Steatohepatitis by Increasing Sirt1 Expression in High-Fat Diet-Induced Obese C57BL/6J Mice

    Get PDF
    The effects of exendin-4 on Sirt1 expression as a mechanism of reducing fatty liver have not been previously reported. Therefore, we investigated whether the beneficial effects of exendin-4 treatment on fatty liver are mediated via Sirt1 in high-fat (HF) diet-induced obese C57BL/6J mice and related cell culture models. Exendin-4 treatment decreased body weight, serum free fatty acid (FA), and triglyceride levels in HF-induced obese C57BL/6J mice. Histological analysis showed that exendin-4 reversed HF-induced hepatic accumulation of lipids and inflammation. Exendin-4 treatment increased mRNA and protein expression of Sirt1 and its downstream factor, AMPK, in vivo and also induced genes associated with FA oxidation and glucose metabolism. In addition, a significant increase in the hepatic expression of Lkb1 and Nampt mRNA was observed in exendin-4-treated groups. We also observed increased expression of phospho-Foxo1 and GLUT2, which are involved in hepatic glucose metabolism. In HepG2 and Huh7 cells, mRNA and protein expressions of GLP-1R were increased by exendin-4 treatment in a dose-dependent manner. Exendin-4 enhanced protein expression of Sirt1 and phospho-AMPKα in HepG2 cells treated with 0.4 mM palmitic acid. We also found that Sirt1 was an upstream regulator of AMPK in hepatocytes. A novel finding of this study was the observation that expression of GLP-1R is proportional to exendin-4 concentration and exendin-4 could attenuate fatty liver through activation of Sirt1

    Activation of Peroxisome Proliferator-Activated Receptor Gamma by Rosiglitazone Increases Sirt6 Expression and Ameliorates Hepatic Steatosis in Rats

    Get PDF
    Sirt6 has been implicated in the regulation of hepatic lipid metabolism and the development of hepatic steatosis. The aim of this study was to address the potential role of Sirt6 in the protective effects of rosiglitazone (RGZ) on hepatic steatosis.) by stomach gavage for 6 weeks. The involvement of Sirt6 in the RGZ's regulation was evaluated by Sirt6 knockdown in AML12 mouse hepatocytes.RGZ treatment ameliorated hepatic lipid accumulation and increased expression of Sirt6, peroxisome proliferator-activated receptor gamma coactivtor-1-α (Ppargc1a/PGC1-α) and Forkhead box O1 (Foxo1) in rat livers. AMP-activated protein kinase (AMPK) phosphorylation was also increased by RGZ, accompanied by alterations in phosphorylation of LKB1. Interestingly, in free fatty acid-treated cells, Sirt6 knockdown increased hepatocyte lipid accumulation measured as increased triglyceride contents (p = 0.035), suggesting that Sirt6 may be beneficial in reducing hepatic fat accumulation. In addition, Sirt6 knockdown abolished the effects of RGZ on hepatocyte fat accumulation, mRNA and protein expression of Ppargc1a/PGC1-α and Foxo1, and phosphorylation levels of LKB1 and AMPK, suggesting that Sirt6 is involved in RGZ-mediated metabolic effects.Our results demonstrate that RGZ significantly decreased hepatic lipid accumulation, and that this process appeared to be mediated by the activation of the Sirt6-AMPK pathway. We propose Sirt6 as a possible therapeutic target for hepatic steatosis
    • …
    corecore