16 research outputs found

    Energy-Efficient Inference Accelerator for Memory-Augmented Neural Networks on an FPGA

    Full text link
    Memory-augmented neural networks (MANNs) are designed for question-answering tasks. It is difficult to run a MANN effectively on accelerators designed for other neural networks (NNs), in particular on mobile devices, because MANNs require recurrent data paths and various types of operations related to external memory access. We implement an accelerator for MANNs on a field-programmable gate array (FPGA) based on a data flow architecture. Inference times are also reduced by inference thresholding, which is a data-based maximum inner-product search specialized for natural language tasks. Measurements on the bAbI data show that the energy efficiency of the accelerator (FLOPS/kJ) was higher than that of an NVIDIA TITAN V GPU by a factor of about 125, increasing to 140 with inference thresholdingComment: Accepted to DATE 201

    The loss of nuclear expression of single-stranded DNA binding protein 2 of gastric adenocarcinoma and its prognostic role: Analysis of molecular subtype.

    No full text
    Single-stranded DNA binding protein 2 (SSBP2) is ubiquitously expressed, with several studies reporting it to be a tumor suppressor. We investigated SSBP2 expression and its clinicopathological significance in gastric cancer. SSBP2 expression was examined by immunohistochemistry in 539 gastric cancer sections. The cases were divided into three subtypes, namely, Epstein-Barr virus-associated (EBV), microsatellite unstable, and others (microsatellite stable and EBV negative), based on the molecular classification of The Cancer Genome Atlas (TCGA). Cases were also divided into two subgroups according to the amplification status of human epidermal growth factor receptor 2 (HER2). Most cases showed SSBP2 positivity, and only 24 (4.5%) cases displayed negative nuclear expression. Loss of nuclear expression correlated significantly with high pT category (P = 0.001), nodal metastasis (P = 0.002), and stage of progression (P = 0.005), with no correlation between molecular characteristics and SSBP2 expression. All HER2 amplification cases displayed positive SSBP2 expression. Negative SSBP2 cases showed significantly shorter recurrence-free survival (RFS) compared to positive SSBP2 cases (P = 0.008). Loss of nuclear expression of SSBP2 was significantly associated with shorter RFS in the microsatellite stable and EBV negative groups (P = 0.002), as well as the HER2 negative group (P = 0.007). However, there were no statistically significant differences in multivariate analyses. Loss of nuclear expression of SSBP2 was a poor prognostic factor, associated with stage of progression and recurrence, and showed no significant difference in molecular characteristics, including TCGA subtype and HER2 status

    Nuclear Expression Loss of SSBP2 Is Associated with Poor Prognostic Factors in Colorectal Adenocarcinoma

    No full text
    Single-stranded DNA binding protein 2 (SSBP2) is involved in DNA damage response and may induce growth arrest in cancer cells, having a potent tumor suppressor role. SSBP2 is ubiquitously expressed and the loss of its expression has been reported in various tumor types. However, the correlation between SSBP2 expression and colorectal cancer (CRC) prognosis remains unclear. SSBP2 nuclear expression was evaluated immunohistochemically in 48 normal colonic mucosae, 47 adenomas, 391 primary adenocarcinomas, and 131 metastatic carcinoma tissue samples. The clinicopathological factors, overall survival (OS), and recurrence-free survival were evaluated, and associations with the clinicopathological parameters were analyzed in 391 colorectal adenocarcinoma patients. A diffuse nuclear SSBP2 expression was detected in all normal colonic mucosa and adenoma samples. SSBP2 expression loss was observed in 131 (34.3%) primary adenocarcinoma and 100 (76.3%) metastatic carcinoma samples. SSBP2 expression was significantly associated with poor prognostic factors, such as vascular invasion (p = 0.005), high pT category (p = 0.045), and shorter OS (p = 0.038), using univariate survival analysis. Nuclear SSBP2 expression loss was significantly observed in colorectal carcinoma and metastatic carcinoma tissues, being associated with poor prognostic factors. SSBP2 acts as a tumor suppressor and may be used as a CRC prognostic biomarker

    Low-Level Expression of MTUS1 Is Associated with Poor Survival in Patients with Lung Adenocarcinoma

    No full text
    Microtubule-associated tumor suppressor 1 (MTUS1) is thought to be downregulated in arious human cancers, which suggests its role as a tumor suppressor. This study investigated the clinicopathological significance of MTUS1 expression in lung adenocarcinoma. Tissue microarray blocks consisting of 161 cases were constructed, and immunohistochemical staining was used to assess MTUS1 expression. Correlations of MTUS1 expression and clinicopathological parameters were analyzed. In addition, we used public databases and performed bioinformatics analysis. Low level of MTUS1 was significantly associated with higher clinical stage (p = 0.006), higher tumor stage (p = 0.044), lymph node metastasis (p = 0.01), worse histologic grade (p = 0.007), lymphovascular invasion (p = 0.014), and higher Ki-67 proliferation index (p < 0.001). Patients with low MTUS1 expression also showed shorter disease-free survival (p = 0.002) and cancer-specific survival (p = 0.006). Analysis of data from the Cancer Genome Atlas confirmed that the mRNA expression of MTUS1 in lung adenocarcinoma was significantly lower than that of normal lung tissue (p = 0.02), and patients with decreased MTUS1 expression showed significantly shorter overall survival (p = 0.008). These results suggest that MTUS1 may be a potential biomarker for predicting clinical outcomes in lung adenocarcinoma patients

    Interpretation of High-Temperature Tensile Properties by Thermodynamically Calculated Equilibrium Phase Diagrams of Heat-Resistant Austenitic Cast Steels

    No full text
    High-temperature tensile properties of three heat-resistant austenitic cast steels fabricated by varying W, Mo, and Al contents were interpreted by thermodynamically calculated equilibrium phase diagrams of austenite, ferrite, and carbides as well as microstructural analyses. A two-step calculation method was adopted to cast steel microstructures below the liquid dissolution temperature because the casting route was not an equilibrium state. Thermodynamically calculated fractions of equilibrium phases were well matched with experimentally measured fractions. Ferrites existed at room and high temperatures in both equilibrium phase diagrams and actual microstructures, which has not been reported in previous researches on austenitic cast steels. In the W2Mo1Al1 steel, 38% and 12% of ferrite existed in the equilibrium phase diagram and actual microstructure, respectively, and led to the void initiation and coalescence at ferrites and consequently to the serious deterioration of high-temperature strengths. The present equilibrium phase diagrams, besides detailed microstructural analyses, effectively evaluated the high-temperature performance by estimating high-temperature equilibrium phases, and provided an important idea on whether ferrite were formed or not in the heat-resistant austenitic cast steels.11sciescopuskc

    Effects of tungsten and molybdenum on high-temperature tensile properties of five heat-resistant austenitic stainless steels

    No full text
    Heat-resistant austenitic stainless steels have been intensively used worldwide for turbo-chargers requiring excellent high-temperature properties to sustain their structures at very high exhaust gas temperatures. Five heat-resistant austenitic stainless steels were fabricated by varying contents of W and Mo, and their high-temperature tensile properties were investigated by analyzing phases (liquid, austenite, ferrite, and carbides) existing at high temperatures. Effects of replacement of expensive alloying element, W, by Mo or reduction in W were also examined. The increase in contents of W and Mo resulted in linearly increased volume fractions of M7C3 and total carbides, while the volume fraction of MC carbide hardly showed any relation, and showed a good correspondence with high-temperature yield and tensile strengths. The steel where 2 wt% of W was replaced by 2 wt% of Mo showed the best 900 degrees C-tensile properties, thereby confirming the successful achievement of partly replacement of W by Mo. In addition, the low-W-containing steels showed excellent 900 degrees C-tensile properties, which also indicated that the reduction in 1-2 wt% of W was accepted for saving costs of alloying elements. (C) 2016 Elsevier B.V. All rights reserved.11sciescopu

    Effects of Mn and Mo addition on high-temperature tensile properties in high-Ni-containing austenitic cast steels used for turbo-charger application

    No full text
    Since turbo-chargers require more excellent high-temperature properties to maintain their structures at further higher exhaust gas temperatures up to 1050 degrees C, a 20 wt%-Ni-containing austenitic cast steel (N20 steel) has been suggested as a promising candidate cast steel. However, this steel is very expensive because it contains a large amount of expensive Ni. In order to partly replace expensive Ni by inexpensive Mn and to improve high temperature tensile properties in the N20 steel, three austenitic cast steels were fabricated by replacing 6 wt% of Ni by 6.9 wt% of Mn or by adding 2-4 wt% of Mo. Thermodynamically calculated fractions of equilibrium phases (austenite, ferrite, and M7C3 carbide) were matched with experimentally measured fractions, although they were somewhat overestimated. The N14 steel where 6 wt% Ni was replaced by 6.9 wt% of Mn did not contain any ferrite, and showed comparable or more excellent high-temperature tensile properties than those of the N20 steel, which indicated the successful replacement up to 6 wt% Ni by Mn, together with alloying cost reduction of 10%. The Mo addition also favorably affected high-temperature properties because Mo worked for increasing both M7C3 fraction and austenite matrix hardness. Simultaneously considering mechanical properties and alloying costs, therefore, these Mo-containing N14 steels can be fully adopted for high-performance turbo-chargers requiring excellent high-temperature properties.11sciescopu

    Effects of Cr and Nb addition on high-temperature tensile properties in austenitic cast steels used for turbo-charger application

    No full text
    In automotive turbo-chargers, excellent high-temperature properties are needed for retaining their structures at extremely high temperature of exhausted gas, and thus austenitic cast steels have been actively developed. In this study, high-temperature tensile properties of austenitic cast steels containing different W, Nb, and Cr were interpreted by deformation and fracture mechanisms related with carbides and austenite matrix. Replacement effects of W by Nb or Cr were also investigated because of expensive alloying cost of W. The high-temperature tensile test results revealed that the Cr-added steel containing many M7C3 carbides showed the higher strength than the Nb-added steel containing hard MC carbides. This was because the strength could be enhanced by distributing carbides having slightly lower hardness such as M7C3 carbides in the strengthened matrix as it could hold hard carbides, like in the Cr-added steel. The Cr-added steel (1 wt% W) also showed the higher strength and elongation at 900 degrees C than the basic-composition steel (2 wt% W), which indicated that the partly replacement of W by Cr was successfully achieved. (C) 2016 Elsevier B.V. All rights reserved.11Nsciescopu
    corecore