92 research outputs found
Critical heat flux enhancement in flow boiling of Al 2O 3 and SiC nanofluids under low pressure and low flow conditions
Critical heat flux (CHF) is the thermal limit of a phenomenon in which a phase change occurs during heating (such as bubbles forming on a metal surface used to heat water), which suddenly decreases the heat transfer efficiency, thus causing localized overheating of the heating surface. The enhancement of CHF can increase the safety margins and allow operation at higher heat fluxes; thus, it can increase the economy. A very interesting characteristic of nanofluids is their ability to significantly enhance the CHF. Nanofluids are nanotechnology-based colloidal dispersions engineered through the stable suspension of nanoparticles. All experiments were performed in round tubes with an inner diameter of 0.01041 m and a length of 0.5 m under low pressure and low flow (LPLF) conditions at a fixed inlet temperature using water, 0.01 vol.% Al2O3/water nanofluid, and SiC/water nanofluid. It was found that the CHF of the nanofluids was enhanced and the CHF of the SiC/water nanofluid was more enhanced than that of the Al2O3/water nanofluid.close6
Evaluation of a Laser Altimeter using the Pseudo-Random Noise Modulation Technique for Apophis Mission
Apophis is a near-Earth object with a diameter of approximately 340 m, which will come closer to the Earth than a geostationary
orbit in 2029, offering a unique opportunity for characterizing the object during the upcoming encounter. Therefore, Korea
Astronomy and Space Science Institute has a plan to propose a space mission to explore the Apophis asteroid using scientific
instruments such as a laser altimeter. In this study, we evaluate the performance metrics of a laser altimeter using a pseudorandom
noise modulation technique for the Apophis mission, in terms of detection probability and ranging accuracy. The
closed-form expression of detection probability is provided using the cross correlation between the received pulse trains and
pseudo-random binary sequence. And the new ranging accuracy model using Gaussian error propagation is also derived
by considering the sampling rate. The operation range is significantly limited by thermal noise rather than background
noise, owing to not only the low power laser but also the avalanche photodiode in the analog mode operation. However, it
is demonstrated from the numerical simulation that the laser altimeter can achieve the ranging performance required for a
proximity operation mode, which employs commercially available components onboard CubeSat-scale satellites for optical
communications
Ethanol extract of Scutellaria baicalensis Georgi prevents oxidative damage and neuroinflammation and memorial impairments in artificial senescense mice
Aging is a progressive process related to the accumulation of oxidative damage and neuroinflammation. We tried to find the anti-amnesic effect of the Scutellaria baicalens Georgia (SBG) ethanol extract and its major ingredients. The antioxidative effect of SBG on the mice model with memory impairment induced by chronic injection of D-galactose and sodium nitrate was studied. The Y-maze test was used to evaluate the learning and memory function of mice. The activities of superoxide dismutase, catalase and the content of malondialdehyde in brain tissue were used for the antioxidation activities. Neuropathological alteration and expression of bcl-2 protein were investigated in the hippocampus by immunohistochemical staining. ROS, neuroinflammation and apoptosis related molecules expression such as Cox-2, iNOS, procaspase-3, cleaved caspase-3, 8 and 9, bcl-2 and bax protein and the products of iNOS and Cox-2, NO, PGE2, were studied using LPS-activated Raw 264.7 cells and microglia BV2 cells. The cognition of mice was significantly improved by the treatment of baicalein and 50 and 100 mg/kg of SBG in Y-maze test. Both SBG groups showed strong antioxidation, antiinflammation effects with significantly decreased iNOS and Cox-2 expression, NO and PGE2 production, increased bcl-2 and decreased bax and cleaved caspase-3 protein expression in LPS induced Raw 264.7 and BV2 cells. We also found that apoptotic pathway was caused by the intrinsic mitochondrial pathway with the decreased cleaved caspase-9 and unchanged cleaved caspase-8 expression. These findings suggest that SBG, especially high dose, 100 mg/kg, improved the memory impairments significantly and showed antioxidation, antiinflammation and intrinsic caspase-mediated apoptosis effects
Hydrodynamic cavitation characteristics of an orifice system and its effects on CRUD-like SiC deposition
In a nuclear power plant, chalk river unidentified deposit (CRUD) is known as a deposit that is composed of corrosion and oxidation materials. It has a porous structure, which combines with boron that is injected into the coolant for controlling power levels. The buildup of corrosion products on the fuel cladding surface has proven to be particularly significant for both BWRs and PWRs. The high temperature of the cladding surface attracts impurities and chemical additives in the reactor coolant that deposit on the fuel rod surface in a process. The deposits on a fuel rod, known as CRUD, can be tenacious, insulative compounds capable of increasing the local clad temperature and accelerating clad corrosion sometimes to the point of fuel failure.
The deposition of CRUD on fuel cladding surfaces causes uneven heating of the reactor core. The situation is exacerbated by boron, which is added to the coolant to control power levels. However, boron becomes concentrated and is deposited within thick CRUD deposits. Ultrasonic mechanisms were developed but they have limitations for decontamination. In this experiment, a decontamination test was conducted using a sample sheet that was composed of SiC/water nanofluids. In addition, it was exposed to swirl flow and common flow for checking enhanced cavitation. It is measured by a pressure film, as shock pressure is associated with cavitation number. As a pressure film is wetted easily in water, it was injected into a holder. In the experiment, the maximum shock pressure was obtained during swirl flow at a low cavitation number. This indicates that pressure was concentrated on the pressure film. Consequently, cavitation can get rid of CRUD layers partially.clos
Experimental study of a universal CHF enhancement mechanism in nanofluids using hydrodynamic instability
Pool boiling tests were designed and performed to confirm the relation between the enhancement of critical heat flux (CHF) in nanofluids and the development of a hydrodynamic instability on the test heater surface from the deposition of nanoparticles during boiling. These pool boiling experiments were carried out under atmospheric pressure using a 0.49 mm diameter cylindrical Ni-Cr wire as a heating element with ZnO, SiO2, SiC, Al 2O3, graphene oxide and CuO nanoparticles at 0.01% volume concentration. The test fluids are distilled water and R-123. The CHF value for each nanofluid is obtained and compared with the measured Rayleigh-Taylor wavelength. Higher CHF results have shorter Rayleigh-Taylor wavelengths in all cases. We propose a modified theoretical model for hydrodynamic instability that incorporates these effects and fits experimental results.close0
Feasibility of flooding the reactor cavity with liquid gallium coolant for IVR-ERVC strategy
In this paper, a new approach replacing the ERVC coolant by a liquid metal instead of water is studied to avoid the heat removal limit of CHF during boiling of water. As the flooding material, gallium is used in terms of the melting and boiling points. Gallium has the enough low melting point of similar to 29.7 degrees C to ensure to maintain liquid state within the containment building. A gallium storage tank for the new flooding system of the ERVC is located in higher position than one of the reactor cavity to make a passive system using the gravity for the event of a station blackout (SBO). While the decay heat from the reactor vessel is removed by gallium, the borated water which is coming out from the reactor system plays a role as the ultimate heat sink in this ERVC system. In the system, two configurations of gallium and borated water are devised depending on whether the direct contact between them occurs. In the first configuration, two fluids are separated by the block structure. The decay heat is transported from molten corium to gallium through the vessel wall. Then the heat is ultimately dissipated by boiling of water in the block structure surface facing the borated water. In the second configuration, the cavity is flooded with both borated water and gallium in the same reactor cavity space. As the result, two layers of the fluids are naturally formed by the density difference. Like the first configuration, finally the heat removal is achieved by boiling of water via gallium. The CFD analysis shows that the maximum temperature of gallium is much lower than its boiling point while the natural circulation is stably formed in two types of the configurations without any serious risk of thermal limit.close
Flow boiling CHF enhancement in an external reactor vessel cooling (ERVC) channel using graphene oxide nanofluid
External reactor vessel cooling for in-vessel retention of corium is an important concept to mitigate the consequences of a severe accident by flooding the reactor cavity. Although this system has some merits, it is restricted by the capacity of heat removal through the nucleate boiling on the outer surface of the reactor. In this study, the graphene oxide (GO) nanofluid at 0.0001 vol% was used to enhance the critical heat flux (CHF). The CHF tests were conducted with a closed-loop facility. Test section simulated the reactor vessel of APR-1400 with a small scale. The test results show about ???20% enhancement of CHF at 50 and 100 kg/m2 s under a 10 K subcooling condition. It means that the additional thermal margin could be acquired by just adding the GO nanoparticles to the flooding water without severe economic concerns. It is also found that this CHF enhancement is caused by coating the graphene oxide nanoparticles on the heated surface. However, the sessile drop tests on the coated heater surface show that the wettability of GO coated surface is not improved. The results of IR thermography show that one of the promising reasons is the change of thermal activity due to the coated GO nanoparticles on the heated surface.close0
- …