13 research outputs found

    Low-Cost Compact Diffuse Speckle Contrast Flowmeter Using Small Laser Diode and Bare Charge-Coupled-Device

    Get PDF
    We report a low-cost compact diffuse speckle contrast flowmeter (DSCF) consisting of a small laser diode and a bare charge-coupled-device (CCD) chip, which can be used for contact measurements of blood flow variations in relatively deep tissues (up to ∼8  mm). Measurements of large flow variations by the contact DSCF probe are compared to a noncontact CCD-based diffuse speckle contrast spectroscopy and a standard contact diffuse correlation spectroscopy in tissue phantoms and a human forearm. Bland–Altman analysis shows no significant bias with good limits of agreement among these measurements: 96.5% ± 2.2% (94.4% to 100.0%) in phantom experiments and 92.8% in the forearm test. The relatively lower limit of agreement observed in the in vivo measurements (92.8%) is likely due to heterogeneous reactive responses of blood flow in different regions/volumes of the forearm tissues measured by different probes. The low-cost compact DSCF device holds great potential to be broadly used for continuous and longitudinal monitoring of blood flow alterations in ischemic/hypoxic tissues, which are usually associated with various vascular diseases

    Blood flow estimation via numerical integration of temporal autocorrelation function in diffuse correlation spectroscopy

    No full text
    Background and Objective: Diffuse correlation spectroscopy (DCS) is an optical technique widely used to monitor blood flow. Recently, efforts have been made to derive new signal processing methods to minimize the systems used and shorten the signal processing time. Herein, we propose alternative approaches to obtain blood flow information via DCS by numerically integrating the temporal autocorrelation curves. Methods: We use the following methods: the inverse of K2 (IK2)—based on the framework of diffuse speckle contrast analysis—and the inverse of the numerical integration of squared g1 (INISg1) which, based on the normalized electric field autocorrelation curve, is more simplified than IK2. In addition, g1 thresholding is introduced to further reduce computational time and make the suggested methods comparable to the conventional nonlinear fitting approach. To validate the feasibility of the suggested methods, studies using simulation, liquid phantom, and in vivo settings were performed. In the meantime, the suggested methods were implemented and tested on three types of Arduino (Arduino Due, Arduino Nano 33 BLE Sense, and Portenta H7) to demonstrate the possibility of miniaturizing the DCS systems using microcotrollers for signal processing. Results: The simulation and experimental results confirm that both IK2 and INISg1 are sufficiently relevant to capture the changes in blood flow information. More interestingly, when g1 thresholding was applied, our results showed that INISg1 outperformed IK2. It was further confirmed that INISg1 with g1 thresholding implemented on a PC and Portenta H7, an advanced Arduino board, performed faster than did the deep learning-based, state-of-the-art processing method. Conclusion: Our findings strongly indicate that INISg1 with g1 thresholding could be an alternative approach to derive relative blood flow information via DCS, which may contribute to the simplification of DCS methodologies. © 2022 The Authors. Published by Elsevier B.V.TRU

    Influence of Spatial Resolution on Satellite-Based PM<sub>2.5</sub> Estimation: Implications for Health Assessment

    No full text
    Satellite-based PM2.5 estimation has been widely used to assess health impact associated with PM2.5 exposure and might be affected by spatial resolutions of satellite input data, e.g., aerosol optical depth (AOD). Here, based on Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD in 2020 over the Yangtze River Delta (YRD) and three PM2.5 retrieval models, i.e., the mixed effects model (ME), the land-use regression model (LUR) and the Random Forest model (RF), we compare these model performances at different spatial resolutions (1, 3, 5 and 10 km). The PM2.5 estimations are further used to investigate the impact of spatial resolution on health assessment. Our cross-validated results show that the model performance is not sensitive to spatial resolution change for the ME and LUR models. By contrast, the RF model can create a more accurate PM2.5 prediction with a finer AOD spatial resolution. Additionally, we find that annual population-weighted mean (PWM) PM2.5 concentration and attributable mortality strongly depend on spatial resolution, with larger values estimated from coarser resolution. Specifically, compared to PWM PM2.5 at 1 km resolution, the estimation at 10 km resolution increases by 7.8%, 22.9%, and 9.7% for ME, LUR, and RF models, respectively. The corresponding increases in mortality are 7.3%, 18.3%, and 8.4%. Our results also show that PWM PM2.5 at 10 km resolution from the three models fails to meet the national air quality standard, whereas the estimations at 1, 3 and 5 km resolutions generally meet the standard. These findings suggest that satellite-based health assessment should consider the spatial resolution effect

    Investigation of nonlinear photoacoustic microscopy using a low‐cost infrared lamp

    Full text link
    Nonlinear photoacoustic microscopy (PAM) is a novel approach to enhance contrast and resolution. In this study, a low‐cost infrared (IR) lamp as a simple approach for nonlinear PAM is demonstrated. Numerical simulations are first performed to verify the nonlinear photoacoustic effect under steady heating for two cases: (a) Differentiation of absorbers with different Grüneisen coefficients; (b) enhancement of photoacoustic amplitude. Then, sets of experiments are conducted to experimentally demonstrate our proposed approach: (a) Longitudinal monitoring of photoacoustic A‐line signals from two samples, porcine tissue ex vivo and hemoglobin and indocyanine green (ICG) solutions in tubes in vitro for demonstrating the above‐mentioned two cases; (b) PAM imaging of hemoglobin and ICG solutions in tubes before and after IR lamp heating. Different signal change and amplitude enhancement are observed in different demonstrations, showing the efficacy of the proposed approach. By virtue of cost‐effectiveness and decent performance, our work facilitates nonlinear PAM studies.A low‐cost infrared lamp‐aided photoacoustic microscopy (PAM) is investigated as a simple alternative to nonlinear PAM, which is based on the temperature‐dependent Grüneisen coefficient. After steady heating of both the sample and surrounding, photoacoustic amplitude varies depending on the change of Grüneisen coefficient, which can be utilized for differentiation of different absorbers and enhancement of photoacoustic amplitude. In this work, a variety of samples are used for demonstration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/172100/1/jbio202100301_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/172100/2/jbio202100301.pd

    Use of Hypoxic Respiratory Challenge for Differentiating Alzheimer&rsquo;s Disease and Wild-Type Mice Non-Invasively: A Diffuse Optical Spectroscopy Study

    No full text
    Alzheimer&rsquo;s disease is one of the most critical brain diseases. The prevalence of the disease keeps rising due to increasing life spans. This study aims to examine the use of hemodynamic signals during hypoxic respiratory challenge for the differentiation of Alzheimer&rsquo;s disease (AD) and wild-type (WT) mice. Diffuse optical spectroscopy, an optical system that can non-invasively monitor transient changes in deoxygenated (&Delta;RHb) and oxygenated (&Delta;OHb) hemoglobin concentrations, was used to monitor hemodynamic reactivity during hypoxic respiratory challenges in an animal model. From the acquired signals, 13 hemodynamic features were extracted from each of &Delta;RHb and &minus;&Delta;OHb (26 features total) for more in-depth analyses of the differences between AD and WT. The hemodynamic features were statistically analyzed and tested to explore the possibility of using machine learning (ML) to differentiate AD and WT. Among the twenty-six features, two features of &Delta;RHb and one feature of &minus;&Delta;OHb showed statistically significant differences between AD and WT. Among ML techniques, a naive Bayes algorithm achieved the best accuracy of 84.3% when whole hemodynamic features were used for differentiation. While further works are required to improve the approach, the suggested approach has the potential to be an alternative method for the differentiation of AD and WT

    Design of an Optical Probe to Monitor Vaginal Hemodynamics during Sexual Arousal

    No full text
    An optical probe was developed to measure the change of oxy-hemoglobin (OHb), deoxy- hemoglobin (RHb), and total hemoglobin (THb) along with temperature from the vaginal wall of female rats. Apomorphine (APO, 80 &#956;g/kg) was administered to elicit sexual arousal in female Sprague Dawley rats (SD, 180&#8722;200 g). The behavior changes caused by APO administration were checked before monitoring vaginal responses. The changes of oxy-, deoxy-, and total hemoglobin concentration and the temperature from the vaginal wall were monitored before, during, and after APO administration. Animals were under anesthesia during the measurement. After APO administration, the concentration of OHb (55 &#177; 29 &#956;M/DPF), RHb (33 &#177; 25 &#956;M/DPF), and THb (83 &#177; 59 &#956;M/DPF) in the vaginal wall increased in a few min, while saline administration did not cause any significant change. In case of the vaginal temperature change, APO decreased the temperature slightly in the vaginal wall while saline administration did not show any temperature change in the vaginal wall. As the outcomes demonstrated, the developed probe can detect hemodynamic and temperature variation in the vaginal wall. The hemodynamic information acquired by the probe can be utilized to establish an objective and accurate standard of female sexual disorders

    Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy

    No full text
    A combined diffuse speckle contrast analysis (DSCA)-near-infrared spectroscopy (NIRS) system is proposed to simultaneously measure qualitative blood flow and blood oxygenation changes in human tissue. The system employs an optical switch to alternate two laser sources at two different wavelengths and a CCD camera to capture the speckle image. Therefore, an optical density can be measured from two wavelengths for NIRS measurements and a speckle contrast can be calculated for DSCA measurements. In order to validate the system, a flow phantom test and an arm occlusion protocol for arterial and venous occlusion were performed. Shorter exposure times (&lt;1 ms) show a higher drop (between 50% and 66%) and recovery of 1/KS2 values after occlusion (approximately 150%), but longer exposure time (3 ms) shows more consistent hemodynamic changes. For four subjects, the 1/KS2 values dropped to an average of 82.1±4.0% during the occlusion period and the average recovery of 1/KS2 values after occlusion was 109.1±0.8%. There was also an approximately equivalent amplitude change in oxyhemoglobin (OHb) and deoxyhemoglobin (RHb) during arterial occlusion (max RHb=0.0085±0.0024 mM/DPF, min OHb=-0.0057±0.0044 mM/DPF). The sensitivity of the system makes it a suitable modality to observe qualitative hemodynamic trends during induced physiological changes. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE).1

    A fiber optic probe coupled low-cost CMOS-camera-based system for simultaneous measurement of oxy-, deoxyhemoglobin, and blood flow

    No full text
    Appropriate oxygen supply and blood flow are important in coordination of body functions and maintaining a life. To measure both oxygen supply and blood flow simultaneously, we developed a system that combined near-infrared spectroscopy (NIRS) and diffuse speckle contrast analysis (DSCA). Our system is more cost effective and compact than such combined systems as diffuse correlation spectroscopy(DCS)-NIRS or DCS flow oximeter, and also offers the same quantitative information. In this article, we present the configuration of DSCA-NIRS and preliminary data from an arm cuff occlusion and a repeated gripping exercise. With further investigation, we believe that DSCA-NIRS can be a useful tool for the field of neuroscience, muscle physiology and metabolic diseases such as diabetes. © 2015 SPIE
    corecore