7,502 research outputs found
Topology-Guided Path Integral Approach for Stochastic Optimal Control in Cluttered Environment
This paper addresses planning and control of robot motion under uncertainty
that is formulated as a continuous-time, continuous-space stochastic optimal
control problem, by developing a topology-guided path integral control method.
The path integral control framework, which forms the backbone of the proposed
method, re-writes the Hamilton-Jacobi-Bellman equation as a statistical
inference problem; the resulting inference problem is solved by a sampling
procedure that computes the distribution of controlled trajectories around the
trajectory by the passive dynamics. For motion control of robots in a highly
cluttered environment, however, this sampling can easily be trapped in a local
minimum unless the sample size is very large, since the global optimality of
local minima depends on the degree of uncertainty. Thus, a homology-embedded
sampling-based planner that identifies many (potentially) local-minimum
trajectories in different homology classes is developed to aid the sampling
process. In combination with a receding-horizon fashion of the optimal control
the proposed method produces a dynamically feasible and collision-free motion
plans without being trapped in a local minimum. Numerical examples on a
synthetic toy problem and on quadrotor control in a complex obstacle field
demonstrate the validity of the proposed method.Comment: arXiv admin note: text overlap with arXiv:1510.0534
Lattice-coupled Antiferromagnet on Frustrated Lattices
Lattice-coupled antiferromagnetic spin model is analyzed for a number of
frustrated lattices: triangular, Kagome, and pyrochlore. In triangular and
Kagome lattices where ground state spins are locally ordered, the spin-lattice
interaction does not lead to a static deformation of the lattice. In the
pyrochlore structure, spin-lattice coupling supports a picture of the hexagon
spin cluster proposed in the recent experiment[S. H. Lee et al. Nature, 418,
856 (2002)]. Through spin-lattice interaction a uniform contraction of the
individual hexagons in the pyrochlore lattice can take place and reduce the
exchange energy. Residual hexagon-hexagon interaction takes the form of a
3-states Potts model where the preferred directions of the spin-loop directors
for nearby hexagons are mutually orthogonal
A mild and efficient approach to enantioenriched α-hydroxyethyl α,β-unsaturated δ-lactams
A straightforward approach toward enantioenriched α-substituted α,β-unsaturated δ-lactams is described. Although a considerable number of approaches toward α,β-unsaturated δ-lactams have been reported, there are relatively few examples of enantioenriched α,δ-disubstituted α,β-unsaturated δ-lactams formation. The δ-stereocenter was formed by addition of allylmagnesium bromide to an N-tert-butylsulfinyl imine. The α,β-unsaturated δ-lactam was furnished by ring-closing metathesis. Although Baylis–Hillman chemistry failed on this cyclic compound, introduction of the hydroxyethyl group prior to ring-closing metathesis was successful. A Baylis–Hillman reaction was used to introduce the substituent at the α-position of the α,β-unsaturated lactam
Conjugated polyelectrolytes: A new class of semiconducting material for organic electronic devices
AbstractThis feature article presents a short review of the recent developments in the synthesis of conjugated polyelectrolytes (CPEs) along with their applications in organic optoelectronic devices with particular focus on the molecular structures of CPEs with ionic functionality, synthetic approaches, and their utilization as an interfacial layer. The orthogonal solubility of the CPEs allows the simple preparation of multilayer organic devices by solution casting on top of a nonpolar organic photoactive layer without disturbing the interfaces, showing their effectiveness in tuning the electronic structures at the interfaces for improving the charge carrier transport and resulting device properties. These achievements highlight the dynamic nature of CPEs and their applicability to a wide range of optoelectronic devices
A Synthetic Strategy toward Eight-Membered Cyclic Amines by Cycloetherification and Claisen Rearrangement
Eight-membered nitrogen-containing heterocycles were straightforwardly produced by a nickel-catalyzed cycloetherification and subsequent Claisen rearrangement of secondary and tertiary alcohols. In particular, a one-pot transformation was achieved with tertiary alcohols in moderate to good yields. This operationally simple reaction is tolerant of many functional groups and applicable to the synthesis of various medium-sized ring nitrogen-containing heterocycles
Surface Sr segregation behaviors in a model thin film perovskite cathode for solid oxide fuel cells
Surface cation segregation, strontium (Sr) in particular, has been considered as one of crucial barriers to achieving a fast surface oxygen exchange rate of perovskite oxide electrodes for solid oxide fuel cells (SOFCs). However, the major driving force for the segregation phenomenon still remains unknown, and thus it is also unknown how to maximize the cathode performance.
In this work, we fabricated epitaxial thin films of SrTi1-xFexO3-δ (STF) via pulsed laser deposition (PLD) and quantitatively characterized their microstructures, surface chemical compositions and oxygen exchange rates by a range of analysis tools, in this case HR-TEM, HR-XRD, angle resolved X-ray photoelectron spectroscopy (AR-XPS) and electrical conductivity relaxation (ECR). The use of well-defined epitaxial thin films not only guarantees high precision, reproducibility and reliability of the surface properties, but also enables us to control the degree of misfit strain by varying the choice of the substrate and the target composition. This, in combination with density functional theory (DTF) simulation, enabled to reveal a close relationship between the degree of surface Sr segregation and the misfit strain and thereby to identify the governing factors for the Sr segregation phenomenon
Catalytic Enantioselective Construction of Quaternary Stereocenters: Assembly of Key Building Blocks for the Synthesis of Biologically Active Molecules
The ever-present demand for drugs with better efficacy and fewer side effects continually motivates scientists to explore the vast chemical space. Traditionally, medicinal chemists have focused much attention on achiral or so-called “flat” molecules. More recently, attention has shifted toward molecules with stereogenic centers since their three-dimensional structures represent a much larger fraction of the chemical space and have a number of superior properties compared with flat aromatic compounds. Quaternary stereocenters, in particular, add greatly to the three-dimensionality and novelty of the molecule. Nevertheless, synthetic challenges in building quaternary stereocenters have largely prevented their implementation in drug discovery. The lack of effective and broadly general methods for enantioselective formation of quaternary stereocenters in simple molecular scaffolds has prompted us to investigate new chemistry and develop innovative tools and solutions.
In this Account, we describe three approaches to constructing quaternary stereocenters: nucleophilic substitution of 3-halooxindoles, conjugate addition of boronic acids to cyclic enones, and allylic alkylation of enolates. In the first approach, malonic ester nucleophiles attack electrophilic 3-halooxindoles, mediated by a copper(II)-bisoxazoline catalyst. A variety of oxindoles containing a benzylic quaternary stereocenter can be accessed through this method. However, it is only applicable to the specialized 3,3-disubstituted oxindole system. To access benzylic quaternary stereocenters in a more general context, we turned our attention to the enantioselective conjugate addition of carbon nucleophiles to α,β-unsaturated carbonyl acceptors. We discovered that in the presence of catalytic palladium-pyridinooxazoline complex, arylboronic acids add smoothly to β-substituted cyclic enones to furnish ketones with a β-benzylic quaternary stereocenter in high yields and enantioselectivities. The reaction is compatible with a wide range of arylboronic acids, β-substituents, and ring sizes.
Aside from benzylic quaternary stereocenters, a more challenging motif is a quaternary stereocenter not adjacent to an aromatic group. Such centers represent more general structures in chemical space but are more difficult to form by asymmetric catalysis. To address this greater challenge, and motivated by the greater reward, we entered the field of palladium-catalyzed asymmetric allylic alkylation of prochiral enolate nucleophiles about a decade ago. On the basis of Tsuji’s work, which solved the issue of positional selectivity for unsymmetrical ketones, we discovered that the phosphinooxazoline ligand effectively rendered this reaction enantioselective. Extensive investigations since then have revealed that the reaction exhibits broad scope and accepts a range of substrate classes, each with its unique advantage in synthetic applications. A diverse array of carbonyl compounds bearing α-quaternary stereocenters are obtained in excellent yields and enantioselectivities, and more possibilities have yet to be explored. As an alternative to palladium catalysis, we also studied iridium-catalyzed asymmetric allylic alkylations that generate vicinal quaternary and tertiary stereocenters in a single transformation. Overall, these methods provide access to small molecule building blocks with a single quaternary stereocenter, can be applied to various molecular scaffolds, and tolerate a wide range of functional groups. We envision that the chemistry reported in this Account will be increasingly useful in drug discovery and design
- …