3,105 research outputs found

    Endometrial Response to Conceptus-Derived Estrogen and Interleukin-1β at the Time of Implantation in Pigs

    Get PDF
    The establishment of pregnancy is a complex process that requires a well-coordinated interaction between the implanting conceptus and the maternal uterus. In pigs, the conceptus undergoes dramatic morphological and functional changes at the time of implantation and introduces various factors, including estrogens and cytokines, interleukin-1β2 (IL1B2), interferon-γ (IFNG), and IFN-δ (IFND), into the uterine lumen. In response to ovarian steroid hormones and conceptus-derived factors, the uterine endometrium becomes receptive to the implanting conceptus by changing its expression of cell adhesion molecules, secretory activity, and immune response. Conceptus-derived estrogens act as a signal for maternal recognition of pregnancy by changing the direction of prostaglandin (PG) F2α from the uterine vasculature to the uterine lumen. Estrogens also induce the expression of many endometrial genes, including genes related to growth factors, the synthesis and transport of PGs, and immunity. IL1B2, a pro-inflammatory cytokine, is produced by the elongating conceptus. The direct effect of IL1B2 on endometrial function is not fully understood. IL1B activates the expression of endometrial genes, including the genes involved in IL1B signaling and PG synthesis and transport. In addition, estrogen or IL1B stimulates endometrial expression of IFN signaling molecules, suggesting that estrogen and IL1B act cooperatively in priming the endometrial function of conceptus-produced IFNG and IFND that, in turn, modulate endometrial immune response during early pregnancy. This review addresses information about maternal-conceptus interactions with respect to endometrial gene expression in response to conceptus-derived factors, focusing on the roles of estrogen and IL1B during early pregnancy in pigs

    eIF2A, an initiator tRNA carrier refractory to eIF2 kinases, functions synergistically with eIF5B

    Get PDF
    The initiator tRNA (Met-tRNA(i)(Met)) at the P site of the small ribosomal subunit plays an important role in the recognition of an mRNA start codon. In bacteria, the initiator tRNA carrier, IF2, facilitates the positioning of Met-tRNAiMet on the small ribosomal subunit. Eukarya contain the Met-tRNAiMet carrier, eIF2 (unrelated to IF2), whose carrier activity is inhibited under stress conditions by the phosphorylation of its -subunit by stress-activated eIF2 kinases. The stress-resistant initiator tRNA carrier, eIF2A, was recently uncovered and shown to load Met-tRNAiMet on the 40S ribosomal subunit associated with a stress-resistant mRNA under stress conditions. Here, we report that eIF2A interacts and functionally cooperates with eIF5B (a homolog of IF2), and we describe the functional domains of eIF2A that are required for its binding of Met-tRNAiMet, eIF5B, and a stress-resistant mRNA. The results indicate that the eukaryotic eIF5B-eIF2A complex functionally mimics the bacterial IF2 containing ribosome-, GTP-, and initiator tRNA-binding domains in a single polypeptide.112Ysciescopu

    WaterScenes: A Multi-Task 4D Radar-Camera Fusion Dataset and Benchmark for Autonomous Driving on Water Surfaces

    Full text link
    Autonomous driving on water surfaces plays an essential role in executing hazardous and time-consuming missions, such as maritime surveillance, survivors rescue, environmental monitoring, hydrography mapping and waste cleaning. This work presents WaterScenes, the first multi-task 4D radar-camera fusion dataset for autonomous driving on water surfaces. Equipped with a 4D radar and a monocular camera, our Unmanned Surface Vehicle (USV) proffers all-weather solutions for discerning object-related information, including color, shape, texture, range, velocity, azimuth, and elevation. Focusing on typical static and dynamic objects on water surfaces, we label the camera images and radar point clouds at pixel-level and point-level, respectively. In addition to basic perception tasks, such as object detection, instance segmentation and semantic segmentation, we also provide annotations for free-space segmentation and waterline segmentation. Leveraging the multi-task and multi-modal data, we conduct numerous experiments on the single modality of radar and camera, as well as the fused modalities. Results demonstrate that 4D radar-camera fusion can considerably enhance the robustness of perception on water surfaces, especially in adverse lighting and weather conditions. WaterScenes dataset is public on https://waterscenes.github.io

    Coevolution underlies GPCR-G protein selectivity and functionality

    Get PDF
    G protein-coupled receptors (GPCRs) regulate diverse physiological events, which makes them as the major targets for many approved drugs. G proteins are downstream molecules that receive signals from GPCRs and trigger cell responses. The GPCR-G protein selectivity mechanism on how they properly and timely interact is still unclear. Here, we analyzed model GPCRs (i.e. HTR, DAR) and Gα proteins with a coevolutionary tool, statistical coupling analysis. The results suggested that 5-hydroxytryptamine receptors and dopamine receptors have common conserved and coevolved residues. The Gα protein also have conserved and coevolved residues. These coevolved residues were implicated in the molecular functions of the analyzed proteins. We also found specific coevolving pairs related to the selectivity between GPCR and G protein were identified. We propose that these results would contribute to better understandings of not only the functional residues of GPCRs and Gα proteins but also GPCR-G protein selectivity mechanisms. © 2021, The Author(s).1

    Expression of aldo-keto reductase family 1 member C1 (AKR1C1) gene in porcine ovary and uterine endometrium during the estrous cycle and pregnancy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aldo-keto reductase family 1 member C1 (AKR1C1) belongs to a superfamily of NADPH-dependent reductases that convert a wide range of substrates, including carbohydrates, steroid hormones, and endogenous prostaglandins. The 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) is a member of AKR family. The aims of this study were to determine its expression in the ovary and uterus endometrium during the estrous cycle and pregnancy.</p> <p>Methods</p> <p>Rapid amplification of cDNA ends (RACE) experiments were performed to obtain the 5' and 3' ends of the porcine <it>20alpha-HSD </it>cDNA. Reverse-transcriptase-PCR (RT-PCR), real-time PCR, northern blot analysis, and western blot analysis were performed to examine the expression of porcine 20alpha-HSD. Immunohistochemical analysis was also performed to determine the localization in the ovary.</p> <p>Results</p> <p>The porcine 20alpha-HSD cDNA is 957 bp in length and encodes a protein of 319 amino acids. The cloned cDNA was virtually the same as the porcine <it>AKR1C1 </it>gene (337 amino acids) reported recently, and only differed in the C-terminal region (the <it>AKR1C1 </it>gene has a longer C-terminal region than our sequence). The <it>20alpha-HSD </it>gene (from now on referred to as <it>AKR1C1</it>) cloned in this paper encodes a deletion of 4 amino acids, compared with the C-terminal region of <it>AKR1C1 </it>genes from other animals. Porcine AKR1C1 mRNA was expressed on day 5, 10, 12, 15 of the cycle and 0-60 of pregnancy in the ovary. The mRNA was also specifically detected in the uterine endometrium on day 30 of pregnancy. Western blot analysis indicated that the pattern of AKR1C1 protein in the ovary during the estrous cycle and uterus during early pregnancy was similar to that of <it>AKR1C1 </it>mRNA expression. The recombinant protein produced in CHO cells was detected at approximately 37 kDa. Immunohistochemical analysis also revealed that pig AKR1C1 protein was localized in the large luteal cells in the early stages of the estrous cycle and before parturition.</p> <p>Conclusions</p> <p>Our study demonstrated that AKR1C1 mRNA and protein are coordinately expressed in the luteal cell of ovary throughout the estrous cycle and in the uterus on day 30 of pregnancy. Thus, the porcine AKR1C1 gene might control important mechanisms during the estrous cycle.</p

    The Effect of 1,8-Cineole Inhalation on Preoperative Anxiety: A Randomized Clinical Trial

    Get PDF
    The aim of this study was to investigate the effect of inhalation of eucalyptus oil and its constituents on anxiety in patients before selective nerve root block (SNRB). This study was a randomized controlled trial carried out in 62 patients before SNRB. The patients were randomized to inhale limonene, 1,8-cineole, or eucalyptus oil, each at concentrations of 1% vol/vol in almond oil or almond oil (control). Anxiety-visual analog scale (A-VAS), state-trait anxiety inventory (STAI), profile of mood states (POMS), pain-visual analog scale (P-VAS), blood pressure, and pulse rate were measured before and after inhalation prior to SNRB. Measures of anxiety, including A-VAS (P<0.001), STAI (P=0.005), and POMS (P<0.001), were significantly lower in 1,8-cineole than in the control group and significantly greater in 1,8-cineole than in the eucalyptus group in A-VAS. P-VAS was significantly lower after than before inhalation of limonene, 1,8-cineole, and eucalyptus, despite having no significant difference in the four groups compared with control group. 1,8-Cineole, a major constituent of eucalyptus, was effective in decreasing anxiety before SNRB. The present findings suggest that inhalation of 1,8-cineole may be used to relieve anxiety before, during, and after various operations, in addition to SNRB

    Excess ribosomal protein production unbalances translation in a model of Fragile X Syndrome

    Get PDF
    Dysregulated protein synthesis is a core pathogenic mechanism in Fragile X Syndrome (FX). The mGluR Theory of FX predicts that pathological synaptic changes arise from the excessive translation of mRNAs downstream of mGlu1/5 activation. Here, we use a combination of CA1 pyramidal neuron-specific TRAP-seq and proteomics to identify the overtranslating mRNAs supporting exaggerated mGlu1/5 -induced long-term synaptic depression (mGluR-LTD) in the FX mouse model (Fmr1−/y). Our results identify a significant increase in the translation of ribosomal proteins (RPs) upon mGlu1/5 stimulation that coincides with a reduced translation of long mRNAs encoding synaptic proteins. These changes are mimicked and occluded in Fmr1−/y neurons. Inhibiting RP translation significantly impairs mGluR-LTD and prevents the length-dependent shift in the translating population. Together, these results suggest that pathological changes in FX result from a length-dependent alteration in the translating population that is supported by excessive RP translation
    corecore