407 research outputs found

    A New Statistic for Analyzing Baryon Acoustic Oscillations

    Full text link
    We introduce a new statistic omega_l for measuring and analyzing large-scale structure and particularly the baryon acoustic oscillations. omega_l is a band-filtered, configuration space statistic that is easily implemented and has advantages over the traditional power spectrum and correlation function estimators. Unlike these estimators, omega_l can localize most of the acoustic information into a single dip at the acoustic scale while also avoiding sensitivity to the poorly constrained large scale power (i.e., the integral constraint) through the use of a localized and compensated filter. It is also sensitive to anisotropic clustering through pair counting and does not require any binning. We measure the shift in the acoustic peak due to nonlinear effects using the monopole omega_0 derived from subsampled dark matter catalogues as well as from mock galaxy catalogues created via halo occupation distribution (HOD) modeling. All of these are drawn from 44 realizations of 1024^3 particle dark matter simulations in a 1h^{-1}Gpc box at z=1. We compare these shifts with those obtained from the power spectrum and conclude that the results agree. This indicates that any distance measurements obtained from omega_0 and P(k) will be consistent with each other. We also show that it is possible to extract the same amount of acoustic information using either omega_0 or P(k) from equal volume surveys.Comment: 12 pages, 7 figures. ApJ accepted. Edit: Now updated with final accepted versio

    Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak

    Full text link
    The baryon acoustic oscillations are a promising route to the precision measure of the cosmological distance scale and hence the measurement of the time evolution of dark energy. We show that the non-linear degradation of the acoustic signature in the correlations of low-redshift galaxies is a correctable process. By suitable reconstruction of the linear density field, one can sharpen the acoustic peak in the correlation function or, equivalently, restore the higher harmonics of the oscillations in the power spectrum. With this, one can achieve better measurements of the acoustic scale for a given survey volume. Reconstruction is particularly effective at low redshift, where the non-linearities are worse but where the dark energy density is highest. At z=0.3, we find that one can reduce the sample variance error bar on the acoustic scale by at least a factor of 2 and in principle by nearly a factor of 4. We discuss the significant implications our results have for the design of galaxy surveys aimed at measuring the distance scale through the acoustic peak.Comment: 5 pages, LaTeX. Submitted to the Astrophysical Journa

    Flowing with Time: a New Approach to Nonlinear Cosmological Perturbations

    Full text link
    Nonlinear effects are crucial in order to compute the cosmological matter power spectrum to the accuracy required by future generation surveys. Here, a new approach is presented, in which the power spectrum, the bispectrum and higher order correlations, are obtained -- at any redshift and for any momentum scale -- by integrating a system of differential equations. The method is similar to the familiar BBGKY hierarchy. Truncating at the level of the trispectrum, the solution of the equations corresponds to the summation of an infinite class of perturbative corrections. Compared to other resummation frameworks, the scheme discussed here is particularly suited to cosmologies other than LambdaCDM, such as those based on modifications of gravity and those containing massive neutrinos. As a first application, we compute the Baryonic Acoustic Oscillation feature of the power spectrum, and compare the results with perturbation theory, the halo model, and N-body simulations. The density-velocity and velocity-velocity power spectra are also computed, showing that they are much less contaminated by nonlinearities than the density-density one. The approach can be seen as a particular formulation of the renormalization group, in which time is the flow parameter.Comment: 20 pages, 7 figures. Matches version published on JCA

    Statistical methods in cosmology

    Full text link
    The advent of large data-set in cosmology has meant that in the past 10 or 20 years our knowledge and understanding of the Universe has changed not only quantitatively but also, and most importantly, qualitatively. Cosmologists rely on data where a host of useful information is enclosed, but is encoded in a non-trivial way. The challenges in extracting this information must be overcome to make the most of a large experimental effort. Even after having converged to a standard cosmological model (the LCDM model) we should keep in mind that this model is described by 10 or more physical parameters and if we want to study deviations from it, the number of parameters is even larger. Dealing with such a high dimensional parameter space and finding parameters constraints is a challenge on itself. Cosmologists want to be able to compare and combine different data sets both for testing for possible disagreements (which could indicate new physics) and for improving parameter determinations. Finally, cosmologists in many cases want to find out, before actually doing the experiment, how much one would be able to learn from it. For all these reasons, sophisiticated statistical techniques are being employed in cosmology, and it has become crucial to know some statistical background to understand recent literature in the field. I will introduce some statistical tools that any cosmologist should know about in order to be able to understand recently published results from the analysis of cosmological data sets. I will not present a complete and rigorous introduction to statistics as there are several good books which are reported in the references. The reader should refer to those.Comment: 31, pages, 6 figures, notes from 2nd Trans-Regio Winter school in Passo del Tonale. To appear in Lectures Notes in Physics, "Lectures on cosmology: Accelerated expansion of the universe" Feb 201

    The sensitivity of BAO Dark Energy Constraints to General Isocurvature Perturbations

    Full text link
    Baryon Acoustic Oscillation (BAO) surveys will be a leading method for addressing the dark energy challenge in the next decade. We explore in detail the effect of allowing for small amplitude admixtures of general isocurvature perturbations in addition to the dominant adiabatic mode. We find that non-adiabatic initial conditions leave the sound speed unchanged but instead excite different harmonics. These harmonics couple differently to Silk damping, altering the form and evolution of acoustic waves in the baryon-photon fluid prior to decoupling. This modifies not only the scale on which the sound waves imprint onto the baryon distribution, which is used as the standard ruler in BAO surveys, but also the shape, width and height of the BAO peak. We discuss these effects in detail and show how more general initial conditions impact our interpretation of cosmological data in dark energy studies. We find that the inclusion of these additional isocurvature modes leads to an increase in the Dark Energy Task Force Figure of merit by 140% and 60% for the BOSS and ADEPT experiments respectively when considered in conjunction with Planck data. We also show that the incorrect assumption of adiabaticity has the potential to bias our estimates of the dark energy parameters by 3σ3\sigma (1σ1\sigma) for a single correlated isocurvature mode, and up to 8σ8\sigma (3σ3\sigma) for three correlated isocurvature modes in the case of the BOSS (ADEPT) experiment. We find that the use of the large scale structure data in conjunction with CMB data improves our ability to measure the contributions of different modes to the initial conditions by as much as 100% for certain modes in the fully correlated case.Comment: 20 pages, 17 figure

    Prospects in Constraining the Dark Energy Potential

    Full text link
    We generalize to non-flat geometries the formalism of Simon et al. (2005) to reconstruct the dark energy potential. This formalism makes use of quantities similar to the Horizon-flow parameters in inflation, can, in principle, be made non-parametric and is general enough to be applied outside the simple, single scalar field quintessence. Since presently available and forthcoming data do not allow a non-parametric and exact reconstruction of the potential, we consider a general parametric description in term of Chebyshev polynomials. We then consider present and future measurements of H(z), Baryon Acoustic Oscillations surveys and Supernovae type 1A surveys, and investigate their constraints on the dark energy potential. We find that, relaxing the flatness assumption increases the errors on the reconstructed dark energy evolution but does not open up significant degeneracies, provided that a modest prior on geometry is imposed. Direct measurements of H(z), such as those provided by BAO surveys, are crucially important to constrain the evolution of the dark energy potential and the dark energy equation of state, especially for non-trivial deviations from the standard LambdaCDM model.Comment: 22 pages, 7 figures. 2 references correcte

    Baryon Acoustic Oscillations and Dynamical Dark Energy

    Full text link
    We compute the impact of dark energy at last scattering on measurements of baryon acoustic oscillations (BAOs). We show that an early dark energy component can contribute a systematic uncertainty to BAO measurements of up to 2.5%. Whilst this effect turns out to only slightly affect current BAO surveys, the results of future BAO surveys might become biased. We find that BAO surveys alone appear unable to resolve this systematic uncertainty, so supplementary measurements are necessary.Comment: 4 pages, added sections and references, matches published versio

    Supersonic Relative Velocity Effect on the Baryonic Acoustic Oscillation Measurements

    Full text link
    We investigate the effect of supersonic relative velocities between baryons and dark matter, recently shown to arise generically at high redshift, on baryonic acoustic oscillation (BAO) measurements at low redshift. The amplitude of the relative velocity effect at low redshift is model-dependent, but can be parameterized by using an unknown bias. We find that if unaccounted, the relative velocity effect can shift the BAO peak position and bias estimates of the dark energy equation-of-state due to its non-smooth, out-of-phase oscillation structure around the BAO scale. Fortunately, the relative velocity effect can be easily modeled in constraining cosmological parameters without substantially inflating the error budget. We also demonstrate that the presence of the relative velocity effect gives rise to a unique signature in the galaxy bispectrum, which can be utilized to isolate this effect. Future dark energy surveys can accurately measure the relative velocity effect and subtract it from the power spectrum analysis to constrain dark energy models with high precision.Comment: 17 pages, 6 figures, submitted to JCA

    Next-to-leading resummation of cosmological perturbations via the Lagrangian picture: 2-loop correction in real and redshift spaces

    Full text link
    We present an improved prediction of the nonlinear perturbation theory (PT) via the Lagrangian picture, which was originally proposed by Matsubara (2008). Based on the relations between the power spectrum in standard PT and that in Lagrangian PT, we derive analytic expressions for the power spectrum in Lagrangian PT up to 2-loop order in both real and redshift spaces. Comparing the improved prediction of Lagrangian PT with NN-body simulations in real space, we find that the 2-loop corrections can extend the valid range of wave numbers where we can predict the power spectrum within 1% accuracy by a factor of 1.0 (z=0.5z=0.5), 1.3 (1), 1.6 (2) and 1.8 (3) vied with 1-loop Lagrangian PT results. On the other hand, in all redshift ranges, the higher-order corrections are shown to be less significant on the two-point correlation functions around the baryon acoustic peak, because the 1-loop Lagrangian PT is already accurate enough to explain the nonlinearity on those scales in NN-body simulations.Comment: 18pages, 4 figure

    Observational signatures of Jordan-Brans-Dicke theories of gravity

    Full text link
    We analyze the Jordan-Brans-Dicke model (JBD) of gravity, where deviations from General Relativity (GR) are described by a scalar field non-minimally coupled to gravity. The theory is characterized by a constant coupling parameter, ωJBD\omega_{\rm JBD}; GR is recovered in the limit ωJBD\omega_{\rm JBD} \to \infty. In such theories, gravity modifications manifest at early times, so that one cannot rely on the usual approach of looking for inconsistencies in the expansion history and perturbations growth in order to discriminate between JBD and GR. However, we show that a similar technique can be successfully applied to early and late times observables instead. Cosmological parameters inferred extrapolating early-time observations to the present will match those recovered from direct late-time observations only if the correct gravity theory is used. We use the primary CMB, as will be seen by the Planck satellite, as the early-time observable; and forthcoming and planned Supernov{\ae}, Baryonic Acoustic Oscillations and Weak Lensing experiments as late-time observables. We find that detection of values of ωJBD\omega_{\rm JBD} as large as 500 and 1000 is within reach of the upcoming (2010) and next-generation (2020) experiments, respectively.Comment: minor revision, references added, matching version published in JCA
    corecore