15,551 research outputs found

    Rigidity of minimal submanifolds in hyperbolic space

    Full text link
    We prove that if an nn-dimensional complete minimal submanifold MM in hyperbolic space has sufficiently small total scalar curvature then MM has only one end. We also prove that for such MM there exist no nontrivial L2L^2 harmonic 1-forms on MM

    Metallic characteristics in superlattices composed of insulators, NdMnO3/SrMnO3/LaMnO3

    Full text link
    We report on the electronic properties of superlattices composed of three different antiferromagnetic insulators, NdMnO3/SrMnO3/LaMnO3 grown on SrTiO3 substrates. Photoemission spectra obtained by tuning the x-ray energy at the Mn 2p -> 3d edge show a Fermi cut-off, indicating metallic behavior mainly originating from Mn e_g electrons. Furthermore, the density of states near the Fermi energy and the magnetization obey a similar temperature dependence, suggesting a correlation between the spin and charge degrees of freedom at the interfaces of these oxides

    Non-monotonic temperature dependent transport in graphene grown by Chemical Vapor Deposition

    Full text link
    Temperature-dependent resistivity of graphene grown by chemical vapor deposition (CVD) is investigated. We observe in low mobility CVD graphene device a strong insulating behavior at low temperatures and a metallic behavior at high temperatures manifesting a non-monotonic in the temperature dependent resistivity.This feature is strongly affected by carrier density modulation. To understand this anomalous temperature dependence, we introduce thermal activation of charge carriers in electron-hole puddles induced by randomly distributed charged impurities. Observed temperature evolution of resistivity is then understood from the competition among thermal activation of charge carriers, temperature-dependent screening and phonon scattering effects. Our results imply that the transport property of transferred CVD-grown graphene is strongly influenced by the details of the environmentComment: 7 pages, 3 figure

    A New Statistic for Analyzing Baryon Acoustic Oscillations

    Full text link
    We introduce a new statistic omega_l for measuring and analyzing large-scale structure and particularly the baryon acoustic oscillations. omega_l is a band-filtered, configuration space statistic that is easily implemented and has advantages over the traditional power spectrum and correlation function estimators. Unlike these estimators, omega_l can localize most of the acoustic information into a single dip at the acoustic scale while also avoiding sensitivity to the poorly constrained large scale power (i.e., the integral constraint) through the use of a localized and compensated filter. It is also sensitive to anisotropic clustering through pair counting and does not require any binning. We measure the shift in the acoustic peak due to nonlinear effects using the monopole omega_0 derived from subsampled dark matter catalogues as well as from mock galaxy catalogues created via halo occupation distribution (HOD) modeling. All of these are drawn from 44 realizations of 1024^3 particle dark matter simulations in a 1h^{-1}Gpc box at z=1. We compare these shifts with those obtained from the power spectrum and conclude that the results agree. This indicates that any distance measurements obtained from omega_0 and P(k) will be consistent with each other. We also show that it is possible to extract the same amount of acoustic information using either omega_0 or P(k) from equal volume surveys.Comment: 12 pages, 7 figures. ApJ accepted. Edit: Now updated with final accepted versio

    Finite-Temperature Properties across the Charge Ordering Transition -- Combined Bosonization, Renormalization Group, and Numerical Methods

    Full text link
    We theoretically describe the charge ordering (CO) metal-insulator transition based on a quasi-one-dimensional extended Hubbard model, and investigate the finite temperature (TT) properties across the transition temperature, TCOT_{\rm CO}. In order to calculate TT dependence of physical quantities such as the spin susceptibility and the electrical resistivity, both above and below TCOT_{\rm CO}, a theoretical scheme is developed which combines analytical methods with numerical calculations. We take advantage of the renormalization group equations derived from the effective bosonized Hamiltonian, where Lanczos exact diagonalization data are chosen as initial parameters, while the CO order parameter at finite-TT is determined by quantum Monte Carlo simulations. The results show that the spin susceptibility does not show a steep singularity at TCOT_{\rm CO}, and it slightly increases compared to the case without CO because of the suppression of the spin velocity. In contrast, the resistivity exhibits a sudden increase at TCOT_{\rm CO}, below which a characteristic TT dependence is observed. We also compare our results with experiments on molecular conductors as well as transition metal oxides showing CO.Comment: 9 pages, 8 figure
    corecore