18,023 research outputs found

    Epitaxial growth and the magnetic properties of orthorhombic YTiO3 thin films

    Full text link
    High-quality YTiO3 thin films were grown on LaAlO3 (110) substrates at low oxygen pressures (<10-8 Torr) using pulsed laser deposition. The in-plane asymmetric atomic arrangements at the substrate surface allowed us to grow epitaxial YTiO3 thin films, which have an orthorhombic crystal structure with quite different a- and b-axes lattice constants. The YTiO3 film exhibited a clear ferromagnetic transition at 30 K with a saturation magnetization of about 0.7 uB/Ti. The magnetic easy axis was found to be along the [1-10] direction of the substrate, which differs from the single crystal easy axis direction, i.e., [001].Comment: 14 pages, 4 figure

    Signatures of Electronic Correlations in Optical Properties of LaFeAsO1x_{1-x}Fx_x

    Full text link
    Spectroscopic ellipsometry is used to determine the dielectric function of the superconducting LaFeAsO0.9_{0.9}F0.1_{0.1} (TcT_c = 27 K) and undoped LaFeAsO polycrystalline samples in the wide range 0.01-6.5 eV at temperatures 10 T\leq T \leq 350 K. The free charge carrier response in both samples is heavily damped with the effective carrier density as low as 0.040±\pm0.005 electrons per unit cell. The spectral weight transfer in the undoped LaFeAsO associated with opening of the pseudogap at about 0.65 eV is restricted at energies below 2 eV. The spectra of superconducting LaFeAsO0.9_{0.9}F0.1_{0.1} reveal a significant transfer of the spectral weight to a broad optical band above 4 eV with increasing temperature. Our data may imply that the electronic states near the Fermi surface are strongly renormalized due to electron-phonon and/or electron-electron interactions.Comment: 4 pages, 4 figures, units in Fig.2 adde

    Optical Study of the Free Carrier Response of LaTiO3/SrTiO3 Superlattices

    Full text link
    We used infrared spectroscopic ellipsometry to investigate the electronic properties of LaTiO3/SrTiO3 superlattices (SLs). Our results indicated that, independent of the SL periodicity and individual layer-thickness, the SLs exhibited a Drude metallic response with sheet carrier density per interface ~3x10^14 cm^-2. This is probably due to the leakage of d-electrons at interfaces from the Mott insulator LaTiO3 to the band insulator SrTiO3. We observed a carrier relaxation time ~ 35 fs and mobility ~ 35 cm^2V^-1s^-1 at 10 K, and an unusual temperature dependence of carrier density that was attributed to the dielectric screening of quantum paraelectric SrTiO3.Comment: 4 pages, 4 figure

    Self-tuning of threshold for a two-state system

    Full text link
    A two-state system (TSS) under time-periodic perturbations (to be regarded as input signals) is studied in connection with self-tuning (ST) of threshold and stochastic resonance (SR). By ST, we observe the improvement of signal-to-noise ratio (SNR) in a weak noise region. Analytic approach to a tuning equation reveals that SNR improvement is possible also for a large noise region and this is demonstrated by Monte Carlo simulations of hopping processes in a TSS. ST and SR are discussed from a little more physical point of energy transfer (dissipation) rate, which behaves in a similar way as SNR. Finally ST is considered briefly for a double-well potential system (DWPS), which is closely related to the TSS

    Optical Conductivity of the Trellis-Lattice t-J Model: Charge Fluctuations in NaV_2O_5

    Full text link
    Optical conductivity of the trellis lattice t-J model at quarter filling is calculated by an exact-diagonalization technique on small clusters, whereby the valence state of V ions of NaV_2O_5 is considered. We show that the experimental features at \sim 1 eV, including peak positions, presence of shoulders, and anisotropic spectral weight, can be reproduced in reasonable range of parameter values, only by assuming that the system is in the charge disproportionated ground state. Possible reconciliation with experimental data suggesting the presence of uniform ladders at T>T_c is discussed.Comment: 4 pages, 4 gif figures. Minor revisions have been made. Hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to [email protected]

    Dielectric constants of Ir, Ru, Pt, and IrO2: Contributions from bound charges

    Full text link
    We investigated the dielectric functions ϵ\epsilon(ω\omega) of Ir, Ru, Pt, and IrO2_2, which are commonly used as electrodes in ferroelectric thin film applications. In particular, we investigated the contributions from bound charges ϵb\epsilon^{b}(ω\omega), since these are important scientifically as well as technologically: the ϵ1b\epsilon_1^{b}(0) of a metal electrode is one of the major factors determining the depolarization field inside a ferroelectric capacitor. To obtain ϵ1b\epsilon_1^{b}(0), we measured reflectivity spectra of sputtered Pt, Ir, Ru, and IrO2 films in a wide photon energy range between 3.7 meV and 20 eV. We used a Kramers-Kronig transformation to obtain real and imaginary dielectric functions, and then used Drude-Lorentz oscillator fittings to extract ϵ1b\epsilon_1^{b}(0) values. Ir, Ru, Pt, and IrO2_2 produced experimental ϵ1b\epsilon_1^{b}(0) values of 48±\pm10, 82±\pm10, 58±\pm10, and 29±\pm5, respectively, which are in good agreement with values obtained using first-principles calculations. These values are much higher than those for noble metals such as Cu, Ag, and Au because transition metals and IrO2_2 have such strong d-d transitions below 2.0 eV. High ϵ1b\epsilon_1^{b}(0) values will reduce the depolarization field in ferroelectric capacitors, making these materials good candidates for use as electrodes in ferroelectric applications.Comment: 26 pages, 6 figures, 2 table

    First-Principles Study of Electronic Structure in α\alpha-(BEDT-TTF)2_2I3_3 at Ambient Pressure and with Uniaxial Strain

    Full text link
    Within the framework of the density functional theory, we calculate the electronic structure of α\alpha-(BEDT-TTF)2_2I3_3 at 8K and room temperature at ambient pressure and with uniaxial strain along the aa- and bb-axes. We confirm the existence of anisotropic Dirac cone dispersion near the chemical potential. We also extract the orthogonal tight-binding parameters to analyze physical properties. An investigation of the electronic structure near the chemical potential clarifies that effects of uniaxial strain along the a-axis is different from that along the b-axis. The carrier densities show T2T^2 dependence at low temperatures, which may explain the experimental findings not only qualitatively but also quantitatively.Comment: 10 pages, 7 figure

    Multiple conducting carriers generated in LaAlO3/SrTiO3 heterostructures

    Get PDF
    We have found that there is more than one type of conducting carriers generated in LaAlO3/SrTiO3 heterostructures by comparing the sheet carrier density and mobility from optical transmission spectroscopy with those from dc-transport measurements. When multiple types of carriers exist, optical characterization dominantly reflects the contribution from the high-density carriers whereas dc-transport measurements may exaggerate the contribution of the high-mobility carriers even though they are present at low-density. Since the low-temperature mobilities determined by dc-transport in the LaAlO3/SrTiO3 heterostructures are much higher than those extracted by optical method, we attribute the origin of high-mobility transport to the low-density conducting carriers.Comment: 3 figures, supplemental materia
    corecore