2 research outputs found

    GPX8 regulates clear cell renal cell carcinoma tumorigenesis through promoting lipogenesis by NNMT

    Get PDF
    Background Clear cell renal cell carcinoma (ccRCC), with its hallmark phenotype of high cytosolic lipid content, is considered a metabolic cancer. Despite the implication of this lipid-rich phenotype in ccRCC tumorigenesis, the roles and regulators of de novo lipid synthesis (DNL) in ccRCC remain largely unexplained. Methods Our bioinformatic screening focused on ccRCC-lipid phenotypes identified glutathione peroxidase 8 (GPX8), as a clinically relevant upstream regulator of DNL. GPX8 genetic silencing was performed with CRISPR-Cas9 or shRNA in ccRCC cell lines to dissect its roles. Untargeted metabolomics, RNA-seq analyses, and other biochemical assays (e.g., lipid droplets staining, fatty acid uptake, cell proliferation, xenograft, etc.) were carried out to investigate the GPX8s involvement in lipid metabolism and tumorigenesis in ccRCC. The lipid metabolic function of GPX8 and its downstream were also measured by isotope-tracing-based DNL flux measurement. Results GPX8 knockout or downregulation substantially reduced lipid droplet levels (independent of lipid uptake), fatty acid de novo synthesis, triglyceride esterification in vitro, and tumor growth in vivo. The downstream regulator was identified as nicotinamide N-methyltransferase (NNMT): its knockdown phenocopied, and its expression rescued, GPX8 silencing both in vitro and in vivo. Mechanically, GPX8 regulated NNMT via IL6-STAT3 signaling, and blocking this axis suppressed ccRCC survival by activating AMPK. Notably, neither the GPX8-NNMT axis nor the DNL flux was affected by the von Hippel Lindau (VHL) status, the conventional regulator of ccRCC high lipid content. Conclusions Taken together, our findings unravel the roles of the VHL-independent GPX8-NNMT axis in ccRCC lipid metabolism as related to the phenotypes and growth of ccRCC, which may be targeted for therapeutic purposes. Graphical abstractThe research was supported by the Basic Science Research Program (grant NRF-2018R1A3B1052328 to S.P.) funded by the Ministry of Science, Information and Communication Technology, by Future Planning through the National Research Foundation, and by the Basic Science Research Program through the National Research Foundation (NRF-2020R1I1A1A01073124 to J-M.K.) funded by the Ministry of Education of Korea

    Real-Time Monitoring of Host-Gut Microbial Interspecies Interaction in Anticancer Drug Metabolism br

    No full text
    Gut microbiome can affect drug metabolism considerably, leading to modified drug response. However, quantitative estimation of host vs. microbial contributions in a living host-gut microbiome system has been challenging. Using the interspecies system of Caenorhabditis elegans and gut bacteria, we developed a real-time approach for monitoring their metabolic interaction in vivo during anticancer drug 5-fluorouracil (5-FU) metabolism. The fluorine NMR-based approach yielded the quantitative contributions to the host 5-FU metabolism made by human gut-microbial species of variable genetic backgrounds. It also experimentally confirmed a bacterial gene-metabolism relationship. Differential 5-FU catabolism among bacterial substrains and the contributions to the host metabolism, unobservable by conventional 16S rRNA metagenomic sequencing, were also found. The metabolic contributions could be correlated with phenotypic developmental toxicity of 5-FU to the host fed with different substrains. Our convenient platform should help to reveal heterogeneity in host-gut microbiome interactions for many drugs in a living symbiotic system.N
    corecore