3,507 research outputs found
A Study on Self-Diagnosis Method to Prevent the Spread of COVID-19 Based on SVM
In this paper, a study was conducted to find a self-diagnosis method to prevent the spread of COVID-19 based on machine learning. COVID-19 is an infectious disease caused by a newly discovered coronavirus. According to WHO(World Health Organization)’s situation report published on May 18th, 2020, COVID-19 has already affected 4,600,000 cases and 310,000 deaths globally and still increasing. The most severe problem of COVID-19 virus is that it spreads primarily through droplets of saliva or discharge from the nose when an infected person coughs or sneezes, which occurs in everyday life. And also, at this time, there are no specific vaccines or treatments for COVID-19.Because of the secure diffusion method and the absence of a vaccine, it is essential to self-diagnose or do a self-diagnosis questionnaire whenever possible. But self-diagnosing has too many questions, and ambiguous standards also take time. Therefore, in this study, using SVM(Support Vector Machine), Decision Tree and correlation analysis found two vital factors to predict the infection of the COVID-19 virus with an accuracy of 80%. Applying the result proposed in this paper, people can self-diagnose quickly to prevent COVID-19 and further prevent the spread of COVID-19
(E)-2,2′-[3-(2-Nitrophenyl)prop-2-ene-1,1-diyl]bis(3-hydroxy-5,5-dimethylcyclohex-2-en-1-one)
In the title compound, C25H29NO6, each of the cyclohexenone rings adopts a half-chair conformation. Each of the pairs of hydroxy and carbonyl O atoms are oriented to allow for the formation of intramolecular O—H⋯O hydrogen bonds, which are typical of xanthene derivatives. The nitro group is rotationally disordered over two orientations in a 0.544 (6):0.456 (6) ratio. In the crystal, weak intermolecualr C—H⋯O hydrogen bonds link molecules into layers parallel to the ab plane
Proteomic and biochemical analyses reveal the activation of unfolded protein response, ERK-1/2 and ribosomal protein S6 signaling in experimental autoimmune myocarditis rat model
<p>Abstract</p> <p>Background</p> <p>To investigate the molecular and cellular pathogenesis underlying myocarditis, we used an experimental autoimmune myocarditis (EAM)-induced heart failure rat model that represents T cell mediated postinflammatory heart disorders.</p> <p>Results</p> <p>By performing unbiased 2-dimensional electrophoresis of protein extracts from control rat heart tissues and EAM rat heart tissues, followed by nano-HPLC-ESI-QIT-MS, 67 proteins were identified from 71 spots that exhibited significantly altered expression levels. The majority of up-regulated proteins were confidently associated with unfolded protein responses (UPR), while the majority of down-regulated proteins were involved with the generation of precursor metabolites and energy metabolism in mitochondria. Although there was no difference in AKT signaling between EAM rat heart tissues and control rat heart tissues, the amounts and activities of extracellular signal-regulated kinase (ERK)-1/2 and ribosomal protein S6 (rpS6) were significantly increased. By comparing our data with the previously reported myocardial proteome of the Coxsackie viruses of group B (CVB)-mediated myocarditis model, we found that UPR-related proteins were commonly up-regulated in two murine myocarditis models. Even though only two out of 29 down-regulated proteins in EAM rat heart tissues were also dysregulated in CVB-infected rat heart tissues, other proteins known to be involved with the generation of precursor metabolites and energy metabolism in mitochondria were also dysregulated in CVB-mediated myocarditis rat heart tissues, suggesting that impairment of mitochondrial functions may be a common underlying mechanism of the two murine myocarditis models.</p> <p>Conclusions</p> <p>UPR, ERK-1/2 and S6RP signaling were activated in both EAM- and CVB-induced myocarditis murine models. Thus, the conserved components of signaling pathways in two murine models of acute myocarditis could be targets for developing new therapeutic drugs or methods aimed at treating enigmatic myocarditis.</p
Dual Therapy with Cidofovir and Mirtazapine for Progressive Multifocal Leukoencephalopathy in a Sarcoidosis Patient
Background: Progressive multifocal leukoencephalopathy (PML) is a demyelinating central nervous system disease caused by JC virus (JCV) reactivation in immunocompromised patients. The disease course of PML is often progressive, fatal and at present, there are few reports on successful treatment outcomes. Case Report: A 45-year-old man with systemic sarcoidosis presented with rapidly progressive dementia and right hemiparesis. The patient was diagnosed with PML as confirmed via brain biopsy and JCV PCR. With a combination treatment of cidofovir and mirtazapine, there was significant improvement of neurological symptoms without measurable functional deficit. Conclusion: This case suggests that dual therapy with cidofovir and mirtazapine might be an effective treatment option in PML patients with sarcoidosis
Gene expression profiling of cancer stem cell in human lung adenocarcinoma A549 cells
<p>Abstract</p> <p>Background</p> <p>The studies on cancer-stem-cells (CSCs) have attracted so much attention in recent years as possible therapeutic implications. This study was carried out to investigate the gene expression profile of CSCs in human lung adenocarcinoma A549 cells.</p> <p>Results</p> <p>We isolated CSCs from A549 cell line of which side population (SP) phenotype revealed several stem cell properties. After staining the cell line with Hoechst 33342 dye, the SP and non-side population (non-SP) cells were sorted using flow cytometric analysis. The mRNA expression profiles were measured using an Affymetrix GeneChip<sup>® </sup>oligonucleotide array. Among the sixty one differentially expressed genes, the twelve genes inclusive three poor prognostic genes; Aldo-keto reductase family 1, member C1/C2 (AKR1C1/C2), Transmembrane 4 L six family member 1 nuclear receptor (TM4SF1), and Nuclear receptor subfamily 0, group B, member 1 (NR0B1) were significantly up-regulated in SP compared to non-SP cells.</p> <p>Conclusion</p> <p>This is the first report indicating the differences of gene expression pattern between SP and non-SP cells in A549 cells. We suggest that the up-regulations of the genes AKR1C1/C2, TM4SF1 and NR0B1 in SP of human adenocarcinoma A549 cells could be a target of poor prognosis in anti-cancer therapy.</p
Evaluation of reference genes in mouse preimplantation embryos for gene expression studies using real-time quantitative RT-PCR (RT-qPCR)
BACKGROUND: Real-time quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) is the most sensitive, and valuable technique for rare mRNA detection. However, the expression profiles of reference genes under different experimental conditions, such as different mouse strains, developmental stage, and culture conditions have been poorly studied. RESULTS: mRNA stability of the actb, gapdh, sdha, ablim, ywhaz, sptbn, h2afz, tgfb1, 18 s and wrnip genes was analyzed. Using the NormFinder program, the most stable genes are as follows: h2afz for the B6D2F-1 and C57BL/6 strains; sptbn for ICR; h2afz for KOSOM and CZB cultures of B6D2F-1 and C57BL/6 strain-derived embryos; wrnip for M16 culture of B6D2F-1 and C57BL/6 strain-derived embryos; ywhaz, tgfb1, 18 s, 18 s, ywhaz, and h2afz for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst embryonic stages cultured in KSOM medium, respectively; h2afz, wrnip, wrnip, h2afz, ywhaz, and ablim for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst stage embryos cultured in CZB medium, respectively; 18 s, h2afz, h2afz, actb, h2afz, and wrnip for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst stage embryos cultured in M16 medium, respectively. CONCLUSIONS: These results demonstrated that candidate reference genes for normalization of target gene expression using RT-qPCR should be selected according to mouse strains, developmental stage, and culture conditions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1756-0500-7-675) contains supplementary material, which is available to authorized users
Accidental ingestion of E-cigarette liquid nicotine in a 15-month-old child: an infant mortality case of nicotine intoxication
Electronic cigarettes are novel tobacco products that are frequently used these days. The cartridge contains liquid nicotine and accidental poisoning, even with a small oral dose, endangers children. We present here a mortality case of a 15-month-old child who ingested liquid nicotine mistaking it for cold medicine. When the emergency medical technicians arrived, she was found to have pulseless electrical activity. Spontaneous circulation was restored after approximately 40 minutes of cardiopulmonary resuscitation. The cotinine level in her urine was 1,716 ng/mL. Despite intensive supportive care, severe anoxic brain injury was found on computed tomography and the child ultimately died. This fatality highlights the need for public health efforts to minimize such accidents
Basic Fibroblast Growth Factor Activates MEK/ERK Cell Signaling Pathway and Stimulates the Proliferation of Chicken Primordial Germ Cells
BACKGROUND: Long-term maintenance of avian primordial germ cells (PGCs) in vitro has tremendous potential because it can be used to deepen our understanding of the biology of PGCs. A transgenic bioreactor based on the unique migration of PGCs toward the recipients' sex cord via the bloodstream and thereby creating a germline chimeric bird has many potential applications. However, the growth factors and the signaling pathway essential for inducing proliferation of chicken PGCs are unknown. METHODOLOGY/PRINCIPAL FINDINGS: Therefore, we conducted this study to investigate the effects of various combinations of growth factors on the survival and proliferation of PGCs under feeder-free conditions. We observed proliferation of PGCs in media containing bFGF. Subsequent characterization confirmed that the cultured PGCs maintained expression of PGC-specific markers, telomerase activity, normal migrational activity, and germline transmission. We also found that bFGF activates the mitogen-activated protein kinase kinase/extracellular-signal regulated kinase (MEK/ERK) signaling. Also, the expression of 133 transcripts was reversibly altered by bFGF withdrawal. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that chicken PGCs can be maintained in vitro without any differentiation or dedifferentiation in feeder free culture conditions, and subsequent analysis revealed that bFGF is one of the key factors that enable proliferation of chicken PGCs via MEK/ERK signaling regulating downstream genes that may be important for PGC proliferation and survival
- …