8 research outputs found
Influence of aluminium content on the microstructure and densification of spark plasma sintered nickel aluminium bronze
Abstract: In this study, nickel aluminium bronze alloys (NAB) with appreciable densification and improved microhardness was consolidated via spark plasma sintering technique. The NAB alloy was synthesized from starting elemental powders comprised nickel (4 wt.%), aluminium (6, 8 & 10 wt.%) and copper using dry milling technique. Starting powders were homogeneously milled using gentle ball mill for 8 h at a speed of 150 rpm and a BPR of 10:1. Subsequently, the milled powders were consolidated using the spark plasma sintering technique at 750 °C under a compressive pressure of 50MPa and rate of heating (100 °C/min). Furthermore, the powders and sintered alloys were characterized using SEM and XRD to ascertain the microstructural and phase evolutions during the synthesis of the NAB. The density and microhardness of the alloys were further investigated to ascertain the integrity of the sintered alloys. The results indicated that the increase in aluminium content resulted in the formation of intermetallic and beta phases on the alloy after sintering and the microhardness of the alloys improved with the increase in aluminium content
Microstructural and electrochemical studies of spark plasma sintered multiwall carbon nanotubes reinforced TiO2eMnO2 based composite
Abstract: An electrochemical study was conducted to investigate the suitability of TiO2, TiO2- MWCNTs and (5,10 and 15 wt.%) of MnO2 in TiO2-MWCNTs composites as dimensional stable electrodes which were developed via conventional powder processing and spark plasma sintering. The following electrochemical tests were carried out including open circuit potential, galvanostatic chronoamperometry and cyclic voltammetry measurements. The results showed that an increase on MnO2 content in the composites did not only lower the potentials but enhanced the stability of the composites. The degradation which translates to corrosion susceptibility was favorable on composite samples with lower MnO2 content. Also, the presence of MWCNTs in the composites improved the electrocatalytic capacity of the material. Furthermore, the anodic layers formed on the composites during polarization was analyzed using SEM, XRD and cyclic voltammetry. The results showed that the formation of anodic layer during 24 h of polarization increased with the addition of MnO2 content and 15 MnO2eTiO2-MWCNT composite grade showed minimal pores after polarization which translates to higher protection
Mechanical, wear and thermal conductivity characteristics of snail shell-derived hydroxyapatite reinforced epoxy bio-composites for adhesive biomaterials applications
This research investigates the effects of snail shell-based hydroxyapatite (HAp) reinforcements on the mechanical, wear, and selected physical properties of epoxy-based composites. The exploitation of these properties was aimed at assessing the suitability and efficiency of the developed bio-composites for adhesive biomedical applications. Snail shell wastes were sourced and processed to obtain (HAp) particles of ˂20 μm. The bio-derived hydroxyapatite-based epoxy composites were produced using the stir-cast method by mixing the hydroxyapatite with the epoxy resin and hardener before pouring into the moulds where they are allowed to cure. Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD) of the snail shell hydroxyapatite particles were carried out while mechanical, wear, and physical properties of the developed composites were evaluated. SEM images of the fracture surfaces were also examined. The results showed that enhancements occurred from the addition of snail shell-derived HAp to epoxy resin in the developed composites. The results revealed that most of the properties gave their optimum values when 15 wt.% reinforcement was used. At this weight fraction, optimum values were obtained which include 43 MPa for maximum flexural strength, 40HS for hardness, 40 J for impact, 0.35 W/mK for thermal conductivity, and 0.07 for wear index
Modern trends in recycling waste thermoplastics and their prospective applications: a review
Thermoplastics and thermosetting plastics are two major classes of polymers in that have recently become materials that are indispensable for humankind. Regarding the three basic needs of human beings—food, shelter, and clothing—polymers and polymer-based materials have gained pre-eminence. Polymers are used in food production, beginning with farming applications, and in the health sector for the development of various biomaterials, as well as in shelter and clothing for a variety of applications. Polymers are the material of choice for all modern-day applications (transportation, sporting, military/defence, electronics, packaging, and many more). Their widespread applications have created many negative challenges, mainly in the area of environmental pollution. While thermoplastics can be easily reprocessed to obtain new products, thermosetting plastics cannot; thus, this review focuses more on the use of waste from thermoplastics with less emphasis on thermosetting plastics. Hence, the review presents a concise summary of the availability of waste thermoplastics as raw materials for product development and the anticipated benefits. The prospects for waste thermoplastics and thermosetting plastics, the possibility of cleaning the environment, and the uncovering of opportunities for further research and development are presented. The limitations of the current methods of waste polymer recycling are highlighted with possible future prospects from newly introduced methods. With zero tolerance for polymer waste in our environments, potential uses for recycled thermosetting plastics are described. Waste polymers should be seen as potential raw materials for research and development as well as major materials for new products. Recycled polymers are expected to be processed for use in advanced materials applications in the future due to their availability. This review shows that the major source of environmental pollution from polymers is the packaging, hence the need to modify products for these applications by ensuring that most of them are biodegradable
Development and characterization of moringa oleifera fruit waste pod derived particulate cellulosic reinforced epoxy bio-composites for structural applications
The desire for environment-friendly materials and sustainability has brought a paradigm shift in the way engineers and the entire material research community thinks while attempting to develop new material, particularly for engineering applications. This study is carried out to underscore the suitability of particulate moringa oleifera fruit pod (MOFP) reinforced epoxy bio-composites on selected properties for structural applications. The dried waste fruit pods were processed as calcined and pulverized fruit pod particulates, respectively. Their respective bio-composites were developed by blending the selected materials in predetermined proportions using the open mould processing method. The MOFP particles were characterized with SEM/EDS and XRD while mechanical and wear properties of the developed bio-composites were evaluated. The results showed that the pulverized MOFP reinforced epoxy bio-composites showed improved properties than the calcined MOFP bio-composites in most of the properties considered. This was noticed to be due to the presence of more elemental constituents and at higher proportions in pulverized particles than in the calcined particles. It was discovered that 15 wt.% pulverized MOFP reinforced epoxy bio-composites gave about 67.9%, 28.7%, 8.8%, and 8.8% enhancement and with a value of 70.2 HS, 39.02 MPa, 198.4 MPa, and 753.28 MPa in hardness, flexural strength, flexural modulus, and tensile modulus, respectively to emerge as the reinforcement content with the optima properties. Based on the findings, MOFP particles reinforced epoxy-based biocomposites can be used in applications where stiffness and high strength are not essential requirements; packaging applications; in electrical component applications such as circuit boards, and cables due to their low thermal conductivity
Fabrication of animal shell and sugarcane bagasse particulate hybrid reinforced epoxy composites for structural applications
This study investigated the effects of using egg and snail shells, along with sugarcane bagasse, on various properties of hybrid reinforced epoxy composites for structural applications. The particulate shells and sugarcane bagasse serve as reinforcements while the matrix consists of epoxy resin and hardener. The composites were produced using the hand lay-up technique, and the mechanical, wear and physical properties of the prepared samples were evaluated. The fractured surfaces of the samples were examined using a scanning electron microscope. The results revealed that the source of the shell had an impact on the properties of the composites as eggshell-sugarcane bagasse particulate reinforced epoxy composites exhibited improved strengths, while snail shell-sugarcane bagasse particulate reinforced epoxy composites showed improved moduli. Optimal values were obtained for flexural and tensile strengths at 15 and 18 wt%, respectively, while flexural and tensile moduli were optimal at 12 and 15 wt%, respectively. Eggshell-sugarcane bagasse particulate reinforced epoxy composites demonstrated an optimal impact strength value of 21.81 J/m2, while snail shell-sugarcane bagasse particulate reinforced epoxy composites showed optimal results in all other properties mostly at 20 wt%. Conclusively, the use of snail shell-sugarcane bagasse particles was found to be more effective than eggshell-sugarcane bagasse particles for enhancing the properties of epoxy-based composites for structural applications while particulate reinforcement content within the range of 12–20 wt% are responsible for optimum performances