8 research outputs found

    Alginate-Based Edible Films and Coatings for Food Packaging Applications

    No full text
    Alginate is a naturally occurring polysaccharide used in the bio industry. It is mainly derived from brown algae species. Alginate-based edible coatings and films attract interest for improving/maintaining quality and extending the shelf-life of fruit, vegetable, meat, poultry, seafood, and cheese by reducing dehydration (as sacrificial moisture agent), controlling respiration, enhancing product appearance, improving mechanical properties, etc. This paper reviews the most recent essential information about alginate-based edible coatings. The categorization of alginate-based coatings/film in food packaging concept is formed gradually with the explanation of the most important titles. Emphasis will be placed on active ingredients incorporated into alginate-based formulations, edible coating/film application methods, research and development studies of coated food products and mass transfer and barrier characteristics of the alginate-based coatings/films. Future trends are also reviewed to identify research gaps and recommend new research areas. The summarized information presented in this article will enable researchers to thoroughly understand the fundamentals of the coating process and to develop alginate-based edible films and coatings more readily

    Validation of a novel technique and evaluation of the surface free energy of food

    No full text
    Characterizing the physical properties of a surface is largely dependent on determining the contact angle exhibited by a liquid. Contact angles on the surfaces of rough and irregularly-shaped food samples are difficult to measure using a contact angle meter (goniometer). As a consequence, values for the surface energy and its components can be mismeasured. The aim of this work was to use a novel contact angle measurement method, namely the snake-based ImageJ program, to accurately measure the contact angles of rough and irregular shapes, such as food samples, and so enable more accurate calculation of the surface energy of food materials. In order to validate the novel technique, the contact angles of three different test liquids on four different smooth polymer films were measured using both the ImageJ software with the DropSnake plugin and the widely used contact angle meter. The distributions of the values obtained by the two methods were different. Therefore, the contact angles, surface energies, and polar and dispersive components of plastic films obtained using the ImageJ program and the Drop Shape Analyzer (DSA) were interpreted with the help of simple linear regression analysis. As case studies, the superficial characteristics of strawberry and endive salad epicarp were measured with the ImageJ program and the results were interpreted with the Drop Shape Analyzer equivalent according to our regression models. The data indicated that the ImageJ program can be successfully used for contact angle determination of rough and strongly hydrophobic surfaces, such as strawberry epicarp. However, for the special geometry of droplets on slightly hydrophobic surfaces, such as salad leaves, the program code interpolation part can be altered

    Effect of dipping and vacuum impregnation coating techniques with alginate based coating on physical quality parameters of cantaloupe melon

    No full text
    Edible coating based on sodium alginate solution was applied to fresh‐cut cantaloupe melon by dipping and vacuum impregnation coating methods. One aim of this work is to produce more technical information concerning these conventional and novel coating processes. For this purpose, the effect of various coating parameters (dipping time, draining time, time length of the vacuum period, vacuum pressure, atmospheric restoration time) with several levels on physical quality parameters (percentage of weight gain, color, and texture) of noncoated and coated samples were determined in order to define adequate coating process parameters to achieve a successful coating application. Additionally, the effects of dipping and vacuum impregnation processes were compared. Both processes improved the firmness of the melon pieces. However, vacuum impregnation application had higher firmness and weight gain results, and had significant effect (P < 0.05) on color (lower luminosity, higher redness, yellowness, and chroma values). Experimental results affirm that vacuum impregnation method can be used successively to improve mechanical and structural properties of food products

    Alginate-Based Edible Films and Coatings for Food Packaging Applications

    No full text
    Alginate is a naturally occurring polysaccharide used in the bio industry. It is mainly derived from brown algae species. Alginate-based edible coatings and films attract interest for improving/maintaining quality and extending the shelf-life of fruit, vegetable, meat, poultry, seafood, and cheese by reducing dehydration (as sacrificial moisture agent), controlling respiration, enhancing product appearance, improving mechanical properties, etc. This paper reviews the most recent essential information about alginate-based edible coatings. The categorization of alginate-based coatings/film in food packaging concept is formed gradually with the explanation of the most important titles. Emphasis will be placed on active ingredients incorporated into alginate-based formulations, edible coating/film application methods, research and development studies of coated food products and mass transfer and barrier characteristics of the alginate-based coatings/films. Future trends are also reviewed to identify research gaps and recommend new research areas. The summarized information presented in this article will enable researchers to thoroughly understand the fundamentals of the coating process and to develop alginate-based edible films and coatings more readily

    Effect of Presence and Concentration of Plasticizers, Vegetable Oils, and Surfactants on the Properties of Sodium-Alginate-Based Edible Coatings

    No full text
    Achieving high quality of a coated food product is mostly dependent on the characteristics of the food material to be coated, the properties of the components in the coating solution, and the obtained coating material. In the present study, usability and effectiveness of various components as well as their concentrations were assessed to produce an effective coating material. For this purpose, different concentrations of gelling agent (sodium alginate 0–3.5%, w/w), plasticizers (glycerol and sorbitol (0–20%, w/w), surfactants (tween 40, tween 80, span 60, span 80, lecithin (0–5%, w/w), and vegetable oils (sunflower oil, olive oil, rapeseed oil (0–5%, w/w) were used to prepare edible coating solutions. Formulations were built gradually, and characteristics of coatings were evaluated by analyzing surface tension values and its polar and dispersive components, emulsion droplet size, and optical appearance in microscopic scale. The results obtained showed that 1.25% sodium alginate, 2% glycerol, 0.2% sunflower oil, 1% span 80, and 0.2% tween 40 or tween 80 can be used in formulation to obtain an effective coating for hydrophobic food surfaces. Three formulations were designed, and their stability (emulsion droplet size, optical characteristics, and creaming index) and wettability tests on strawberry showed that they could be successfully used in coating applications

    The Development of a Uniform Alginate-Based Coating for Cantaloupe and Strawberries and the Characterization of Water Barrier Properties

    No full text
    Water loss, gain or transfer results in a decline in the overall quality of food. The aim of this study was to form a uniform layer of sodium alginate-based edible coating (1.25% sodium alginate, 2% glycerol, 0.2% sunflower oil, 1% span 80, 0.2% tween 80, (w/w)) and investigate the effects on the water barrier characteristics of fresh-cut cantaloupe and strawberries. To this end, a uniform and continuous edible film formation was achieved (0.187 &plusmn; 0.076 mm and 0.235 &plusmn; 0.077 mm for cantaloupe and strawberries, respectively) with an additional immersion step into a calcium solution at the very beginning of the coating process. The coating application was effective in significantly reducing the water loss (%) of the cantaloupe pieces. However, no significant effect was observed in water vapor resistance results and weight change measurements in a climate chamber (80%&rarr;60% relative humidity (RH) at 10 &deg;C). External packaging conditions (i.e., closed, perforated, and open) were not significantly effective on water activity (aw) values of cantaloupe, but were effective for strawberry values. In general, the coating application promoted the water loss of strawberry samples. Additionally, the water vapor transmission rate of stand-alone films was determined (2131 g&middot;100 &micro;m/(m2&middot;d&middot;bar) under constant environmental conditions (23 &deg;C, 100%&rarr;50% RH) due to the ability to also evaluate the efficacy in ideal conditions
    corecore