2,019 research outputs found

    Neel order, quantum spin liquids and quantum criticality in two dimensions

    Full text link
    This paper is concerned with the possibility of a direct second order transition out of a collinear Neel phase to a paramagnetic spin liquid in two dimensional quantum antiferromagnets. Contrary to conventional wisdom, we show that such second order quantum transitions can potentially occur to certain spin liquid states popular in theories of the cuprates. We provide a theory of this transition and study its universal properties in an ϵ\epsilon expansion. The existence of such a transition has a number of interesting implications for spin liquid based approaches to the underdoped cuprates. In particular it considerably clarifies existing ideas for incorporating antiferromagnetic long range order into such a spin liquid based approach.Comment: 18 pages, 17 figure

    Fermi surfaces in general co-dimension and a new controlled non-trivial fixed point

    Full text link
    Traditionally Fermi surfaces for problems in dd spatial dimensions have dimensionality d1d-1, i.e., codimension dc=1d_c=1 along which energy varies. Situations with dc>1d_c >1 arise when the gapless fermionic excitations live at isolated nodal points or lines. For dc>1d_c > 1 weak short range interactions are irrelevant at the non-interacting fixed point. Increasing interaction strength can lead to phase transitions out of this Fermi liquid. We illustrate this by studying the transition to superconductivity in a controlled ϵ\epsilon expansion near dc=1d_c = 1. The resulting non-trivial fixed point is shown to describe a scale invariant theory that lives in effective space-time dimension D=dc+1D=d_c + 1. Remarkably, the results can be reproduced by the more familiar Hertz-Millis action for the bosonic superconducting order parameter even though it lives in different space-time dimensions.Comment: 4 page

    PHARMACOKINETICS OF SECOND LINE ANTI-TB DRUG (LEVOFLOXACIN) IN MDR-TB PATIENTS

    Get PDF
    Tuberculosis, commonly known as TB, is the world’s second deadliest disease caused by the bacterium Mycobacterium tuberculosis (MTB). The treatment for TB started in the year 1944 after the discovery of the antibiotic streptomycin. Over the century, the TB bacteria have evolved into the resistance forms, despite the use of effective drugs. In our study, We analysed the pharmacokinetic profile of Levofloxacin in MDR-TB patients. LFX is a synthetic broad spectrum antibacterial agent. It is the S-Isomer of the race mate. Plasma concentrations of levofloxacin were estimated using the validated methods by HPLC at NIRT. We had analysed the plasma concentrations of individual patients over different time intervals post single dosage. In case of LFX, about 10(40%) patients had their Cmax> 12µg/ml, 3 patients showed sub therapeutic Cmax value i.e. < 8 µg/ml and the remaining 12 patients (48%) had their Cmax value within the range. This study is expected to have important clinical implications.&nbsp

    A controlled expansion for certain non-Fermi liquid metals

    Full text link
    The destruction of Fermi liquid behavior when a gapless Fermi surface is coupled to a fluctuating gapless boson field is studied theoretically. This problem arises in a number of different contexts in quantum many body physics. Examples include fermions coupled to a fluctuating transverse gauge field pertinent to quantum spin liquid Mott insulators, and quantum critical metals near a Pomeranchuk transition. We develop a new controlled theoretical approach to determining the low energy physics. Our approach relies on combining an expansion in the inverse number (N) of fermion species with a further expansion in the parameter \epsilon = z_b -2 where z_b is the dynamical critical exponent of the boson field. We show how this limit allows a systematic calculation of the universal low energy physics of these problems. The method is illustrated by studying spinon fermi surface spin liquids, and a quantum critical metal at a second order electronic nematic phase transition. We calculate the low energy single particle spectra, and various interesting two particle correlation functions. In some cases deviations from the popular Random Phase Approximation results are found. Some of the same universal singularities are also calculated to leading non-vanishing order using a perturbative renormalization group calculation at small N extending previous results of Nayak and Wilczek. Implications for quantum spin liquids, and for Pomeranchuk transitions are discussed. For quantum critical metals at a nematic transition we show that the tunneling density of states has a power law suppression at low energies.Comment: 19 pages, 15 figure

    Correlated Topological Insulators and the Fractional Magnetoelectric Effect

    Full text link
    Topological insulators are characterized by the presence of gapless surface modes protected by time-reversal symmetry. In three space dimensions the magnetoelectric response is described in terms of a bulk theta term for the electromagnetic field. Here we construct theoretical examples of such phases that cannot be smoothly connected to any band insulator. Such correlated topological insulators admit the possibility of fractional magnetoelectric response described by fractional theta/pi. We show that fractional theta/pi is only possible in a gapped time reversal invariant system of bosons or fermions if the system also has deconfined fractional excitations and associated degenerate ground states on topologically non-trivial spaces. We illustrate this result with a concrete example of a time reversal symmetric topological insulator of correlated bosons with theta = pi/4. Extensions to electronic fractional topological insulators are briefly described.Comment: 4 pages + ref

    Multiparticle Entanglement in the Lipkin-Meshkov-Glick Model

    Full text link
    The multiparticle entanglement in the Lipkin-Meshkov-Glick model has been discussed extensively in this paper. Measured by the global entanglement and its generalization, our calculation shows that the multiparticle entanglement can faithfully detect quantum phase transitions. For an antiferromagnetic case the multiparticle entanglement reaches the maximum at the transition point, whereas for ferromagnetic coupling, two different behaviors of multiparticle entanglement can be identified, dependent on the anisotropic parameter in the coupling.Comment: 7 pages and 5 figure

    Critical fermi surfaces and non-fermi liquid metals

    Full text link
    At certain quantum critical points in metals an entire Fermi surface may disappear. A crucial question is the nature of the electronic excitations at the critical point. Here we provide arguments showing that at such quantum critical points the Fermi surface remains sharply defined even though the Landau quasiparticle is absent. The presence of such a critical Fermi surface has a number of consequences for the universal phenomena near the quantum critical point which are discussed. In particular the structure of scaling of the universal critical singularities can be significantly modified from more familiar criticality. Scaling hypotheses appropriate to a critical fermi surface are proposed. Implications for experiments on heavy fermion critical points are discussed. Various phenomena in the normal state of the cuprates are also examined from this perspective. We suggest that a phase transition that involves a dramatic reconstruction of the Fermi surface might underlie a number of strange observations in the metallic states above the superconducting dome.Comment: 15 pages, 7 figures; some clarificatory remarks/references added and typos fixe
    corecore