2,205 research outputs found

    Cortical actin recovery at the immunological synapse leads to termination of lytic granule secretion in cytotoxic T lymphocytes.

    Get PDF
    CD8+ cytotoxic T lymphocytes (CTLs) eliminate virally infected cells through directed secretion of specialized lytic granules. Because a single CTL can kill multiple targets, degranulation must be tightly regulated. However, how CTLs regulate the termination of granule secretion remains unclear. Previous work demonstrated that centralized actin reduction at the immune synapse precedes degranulation. Using a combination of live confocal, total internal reflection fluorescence, and superresolution microscopy, we now show that, after granule fusion, actin recovers at the synapse and no further secretion is observed. Depolymerization of actin led to resumed granule secretion, suggesting that recovered actin acts as a barrier preventing sustained degranulation. Furthermore, RAB27a-deficient CTLs, which do not secrete cytotoxic granules, failed to recover actin at the synapse, suggesting that RAB27a-mediated granule secretion is required for actin recovery. Finally, we show that both actin clearance and recovery correlated with synaptic phosphatidylinositol 4,5-bisphosphate (PIP2) and that alterations in PIP2 at the immunological synapse regulate cortical actin in CTLs, providing a potential mechanism through which CTLs control cortical actin density. Our work provides insight into actin-related mechanisms regulating CTL secretion that may facilitate serial killing during immune responses

    The effectiveness of sewage treatment processes to remove faecal pathogens and antibiotic residues

    Get PDF
    Pathogens and antibiotics enter the aquatic environment via sewage effluents and may pose a health risk to wild life and humans. The aim of this study was to determine the levels of faecal bacteria, and selected antibiotic residues in raw wastewater and treated sewage effluents from three different sewage treatment plants in the Western Cape, South Africa. Sewage treatment plant 1 and 2 use older technologies, while sewage treatment plant 3 has been upgraded and membrane technologies were incorporated in the treatment processes. Coliforms and Escherichia coli (E. coli) were used as bioindicators for faecal bacteria. A chromogenic test was used to screen for coliforms and E. coli. Fluoroquinolones and sulfamethoxazole are commonly used antibiotics and were selected to monitor the efficiency of sewage treatment processes for antibiotic removal. Enzyme Linked Immunosorbent Assays (ELISAs) were used to quantitate antibiotic residues in raw and treated sewage. Raw intake water at all treatment plants contained total coliforms and E. coli. High removal of E. coli by treatment processes was evident for treatment plant 2 and 3 only. Fluoroquinolones and sulfamethoxazole were detected in raw wastewater from all sewage treatment plants. Treatment processes at plant 1 did not reduce the fluoroquinolone concentration in treated sewage effluents. Treatment processes at plant 2 and 3 reduced the fluoroquinolone concentration by 21% and 31%, respectively. Treatment processes at plant 1 did not reduce the sulfamethoxazole concentration in treated sewage effluents. Treatment processes at plant 2 and 3 reduced sulfamethoxazole by 34% and 56%, respectively. This study showed that bacteria and antibiotic residues are still discharged into the environment. Further research needs to be undertaken to improve sewage treatment technologies, thereby producing a better quality treated sewage effluent

    Non-Hematopoietic Cells in Lymph Nodes Drive Memory CD8 T Cell Inflation during Murine Cytomegalovirus Infection

    Get PDF
    During human and murine cytomegalovirus (MCMV) infection an exceptionally large virus-specific CD8 T cell pool is maintained in the periphery lifelong. This anomalous response is only seen for specific subsets of MCMV-specific CD8 T cells which are referred to as 'inflationary T cells'. How memory CD8 T cell inflation is induced and maintained is unclear, though their activated phenotype strongly suggests an involvement of persistent antigen encounter during MCMV latency. To dissect the cellular and molecular requirements for memory CD8 T cell inflation, we have generated a transgenic mouse expressing an MHC class I-restricted T cell receptor specific for an immunodominant inflationary epitope of MCMV. Through a series of adoptive transfer experiments we found that memory inflation was completely dependent on antigen presentation by non-hematopoietic cells, which are also the predominant site of MCMV latency. In particular, non-hematopoietic cells selectively induced robust proliferation of inflationary CD8 T cells in lymph nodes, where a majority of the inflationary CD8 T cells exhibit a central-memory phenotype, but not in peripheral tissues, where terminally differentiated inflationary T cells accumulate. These results indicate that continuous restimulation of central memory CD8 T cells in the lymph nodes by infected non-hematopoietic cells ensures the maintenance of a functional effector CD8 T pool in the periphery, providing protection against viral reactivation events

    Jet dispensing of multi-layered films for the co-delivery of three antihypertensive agents

    Get PDF
    Three-layer thin films comprising of two polymers as substrate (ethyl cellulose and, copovidone K28) and three antihypertensive agents (hydrochlorothiazide, amiloride HCl, and carvedilol) were printed using jet dispensing technology. Two film formulations with different ethyl cellulose to copovidone K28 ratio (i.e., 90/10 and 50/50 w/w) were prepared using a three-course dispensing. The films were characterized regarding surface morphology, solid-state properties, polymer-drug interactions, drug distribution in each layer, and in vitro drug release. All the components of the films were found to be in the amorphous state apart from hydrochlorothiazide which retained its crystallinity. FT-IR spectroscopy revealed hydrogen bond interactions between carvedilol and copovidone K28. Combinations of ethyl cellulose and copovidone K28 provide suitable polymeric film substrates with the ability to modify drug release. Particularly, decreased ethyl cellulose to copovidone K28 weight ratio was found to suppress the crystallization of hydrochlorothiazide and to increase the release rate of the dispensed drugs. Jet dispensing was found to be a rapid technology for the preparation of multi-layered films that can be used as personalized formulations for the delivery of combinations of drugs
    corecore