57 research outputs found
On the Way to Optoionics
Discussions with Michael GrĂ€tzel, Ursula Röthlisberger, Robert A. Evarestov and Bettina V. Lotsch are gratefully acknowledged.Based on the recent finding of significant ion conduction enhancement in iodide perovskites upon illumination, the potential of an emerging field âopto-ionicsâ â that we define in parallelism to âopto-electronicsâ â is explored. We emphasize that the major prerequisite is the identification of appropriate stable materials which can act as light-tunable electrolytes, permeation membranes, or electrodes. In this way, classic, but light-tunable electrochemical devices would be in reach. We also touch upon related issues such as sensing, switching, and catalysis, in which light effects on ionic charge carriers are also expected to be important.Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Unionâs Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART
Defect chemistry of methylammonium lead iodide
The present work deals with the defect chemistry and charge transport properties in halide perovskites, and in particular in the archetypal methylammonium lead iodide. These materials are extensively researched due to their very promising application as light-harvesters in solar cells and in other optoelectronic devices. Notwithstanding the numerous studies dealing with these materials (especially with their optical and electronic properties, and with device application), a significant portion of the underlying physics and chemistry is still poorly understood. Indeed, the physico-chemical features behind their exceptional photo-electrochemical properties are still largely unknown. Moreover, these materials suffer from severe degradation processes presently impeding their practical application. In addition, the charge transport in these materials is not purely electronic, but rather shows a significant ionic portion due to mobile ionic defects. The nature of such ion conduction, alongside its effect on the photo-electrochemical properties and on the materials stability, has never been systematically investigated. The study of these aspects is the aim of this thesis, where:
At first, we study the charge transport properties of methylammonium lead iodide, with particular attention to the ionic contribution, and we perform a defect chemical study of the compound. We show how the ionic conductivity, in equilibrium conditions, can be unambiguously assigned to mobile iodine vacancies, with an electronic contribution due to electron holes or conduction electron depending on the iodine activity.
Secondly, we investigate the light effect on the charge transport previously characterized. Alongside an expected increase of the electronic contribution, we observe a striking enhancement of ionic conductivity in methylammonium lead iodide upon illumination. This remarkable observation is of fundamental relevance for both photovoltaics and solid state ionics fields. Here we also discuss a mechanism for such photo-enhanced ion conduction that relies on electron-ion interaction.
Subsequently, we analyze methylammonium lead iodide and other hybrid halide perovskites under oxygen exposure, both in the dark and under illumination. We show that light strongly affects the kinetics of oxygen interaction, so much so that under illumination methylammonium lead iodide completely degrades, while it is metastable in the dark. The oxygen, when incorporated in a sufficient amount in the lattice, also acts as acceptor dopant, greatly varying the ionic and electronic conductivities.
We then investigate stability of several halide perovskites with respect to temperature, oxygen, and illumination through thermodynamic considerations. Here we show how many of these processes are expected to be extremely severe for some of the compounds, underlining an important -and intrinsic- bottleneck for the application of these materials.
At last, we investigate the short-range ion dynamics in methylammonium lead iodide, since these are linked to stability and electronic transport properties. Here, we show that methylammonium dynamics conforms well to a fast bi-axial rotation becoming isotropic in the cubic phase. In the inorganic lattice, a strong nuclear coupling between Pb and I is present, alongside highly active iodine dynamics
First-principles comparative study of perfect and defective CsPbX3 (X = Br, I) crystals
We thank R. Merkle for numerous fruitful discussions and G. Siegle for experimental assistance. This study was partly supported by the M-ERA-NET project SunToChem (EK). Calculations were performed using computational facilities of St. Petersburg State University and Max Planck Institute for Solid State Research. Open Access funding provided by the Max Planck Society.First principles Density Functional Theory (DFT) hybrid functional PBESOL0 calculations of the atomic and electronic structure of perfect CsPbI3, CsPbBr3 and CsPbCl3 crystals, as well as defective CsPbI3 and CsPbBr3 crystals are performed and discussed. For the perfect structure, decomposition energy into binary compounds (CsX and PbX2) is calculated, and a stability trend of the form CsPbBr3 > CsPbI3 > CsPbCl3 is found. In addition, calculations of the temperature-dependent heat capacity are performed and shown to be in good agreement with experimental data. As far as the defect structure is considered, it is shown that interstitial halide atoms in CsPbBr3 do not tend to form di-halide dumbbells Br2- while such dimers are energetically favoured in CsPbI3, analogous to the well-known H-centers in alkali halides. In the case of CsPbBr3, a loose trimer configuration (Br32-) seems to be energetically preferred. The effects of crystalline symmetry and covalency are discussed, alongside the role of defects in recombination processes.Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Unionâs Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMARTÂČhttps://pubs.rsc.org/en/content/articlepdf/2020/cp/c9cp06322
First-principles calculations of iodine-related point defects in CsPbI3
Many thanks to A. Lushchik, A. Popov and R. Merkle for numerous fruitful discussions. This study was partly supported by the Latvian Council for Science (grant LZP-2018/1-0147 to EK). R.A.E acknowledges the assistance of the University Computer Center of Saint-Petersburg State University for high-performance computations.We present here first principles hybrid functional calculations of the atomic and electronic structure of several iodine-related point defects in CsPbI3, a material relevant for photovoltaic applications. We show that the presence of neutral interstitial I atoms or electron holes leads to the formation of di-halide dumbbells of I2â (analogous to the well-known situation in alkali halides). Their formation and one-electron energies in the band gap are determined. The formation energy of the Frenkel defect pair (I vacancies and neutral interstitial I atoms) is found to be âŒ1 eV, and as such is smaller than the band gap. We conclude that both iodine dumbbells and iodine vacancies could be, in principle, easily produced by interband optical excitation.Latvian Council for Science (grant LZP-2018/1-0147 to EK); Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Unionâs Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART
Non-stoichiometry and ion transport in halide perovskites: Equilibrium situation and light effects
In recent years, hybrid halide perovskites have been attracting great attention due to their exceptional photo-electrochemical properties.[1-2] When used as light-harvesters in solar cells, device efficiencies exceeding 22% can be realized. We showed that a deeper understanding of (i) functionality, (ii) stability, as well as (iii) the possibility to improve the performance require a thorough insight into non-stoichiometry and ion transport.[3-5] In this contribution, we study the nature of the ionic conductivity in methylammonium lead iodide (MAPbI3), the archetypal halide perovskite, by means of a great number of electrochemical and nuclear magnetic techniques.[4] To aid the experimental investigation, we include detailed defect chemical modelling describing the effects of iodine partial pressure (Fig. 1a), doping and interaction with oxygen.[5] We also discuss results that show the significance of ion redistribution phenomena for relevant interfaces. By extending this study to the situation under illumination, we observe a striking enhancement of ionic conductivity by more than 2 orders of magnitude in MAPbI3, alongside the expected increase in electronic conductivity.[6] We provide a mechanistic explanation of this astonishing phenomenon and discuss its relevance for future light-triggered ionic devices (âopto-ionicsâ, see Fig. 1b).
Please click Additional Files below to see the full abstract
Detection and relevance of ion conduction in hybrid organic-inorganic halide perovskites for photovoltaic applications
In recent years, hybrid organic-inorganic halide perovskites have attracted much attention with respect to their potential use as sensitizers in solar cells.[1] These materials show many outstanding properties, such as high absorption coefficients, ideal bandgap for solar light absorption (1.5 eV), long electron-hole recombination lengths and high charge carrier mobilities[1-3], that leads to a photo-conversion efficiency of hybrid-perovskite-containing devices exceeding 20%.[4] However, anomalous behaviors have been reported for these materials, such as high apparent dielectric constants at low AC frequencies or photocurrent hysteresis of solar cell devices during operation.[5] In this study[6] we measure the electrical transport properties of CH3NH3PbI3, by means of DC galvanostatic polarization, AC impedance spectroscopy and open circuit voltage measurements in electrochemical cells. By using ion-blocking electrodes, we detect a clear stoichiometric polarization behavior, from which we can separate electronic and ionic contributions to the total conductivity. We show that, under certain conditions, ionic conductivity can substantially exceed electronic conductivity and we assess the nature of the migrating ions (iodine ions). It is noteworthy that such ionic conductivity can naturally explain the above mentioned anomalies (Figure 1). Moreover, from the experimental data, a strong trapping of the electronic carriers due to ionic defects is ascertained. As a natural follow-up to better understand the defect chemistry of such materials, conductivity response to different atmospheres (I2, O2) has been measured and acceptor doping has been successfully applied.
Please click Additional Files below to see the full abstract
Tuning Ionic and Electronic Conductivities in the "Hollow" Perovskite { en}MAPbI<sub>3</sub>
The recently developed family of 3D halide perovskites with general formula (A)1-x(en)x(M)1-0.7x(I)3-0.4x (A = MA, FA; M = Pb2+, Sn2+ en = ethylenediammonium), often referred to as "hollow"perovskites, exhibits exceptional air stability and crystallizes in the high symmetry α phase at room temperature. These properties are counterintuitive, considering that these structures include the large divalent en cation charge-compensated by vacancies of Pb cations and I anions. Moreover, the understanding of their transport behavior is incomplete. To provide new insights into the ionic and electronic transport properties of these "hollow"perovskites, we performed DC polarization experiments and ab initio calculations on the {en}MAPbI3 material. We observe large variations of ionic and electronic conductivities with en concentration, which can be explained by charge and site arguments in conjunction with trapping effects. The latter is reflected by the increase of the activation energies for iodide ion transport with higher en content that we observe from both experimental and computational results. The connection between these transport phenomena and the stability of "hollow"perovskite materials and devices is discussed. </p
Latency correction in sparse neuronal spike trains
Background: In neurophysiological data, latency refers to a global shift of
spikes from one spike train to the next, either caused by response onset
fluctuations or by finite propagation speed. Such systematic shifts in spike
timing lead to a spurious decrease in synchrony which needs to be corrected.
New Method: We propose a new algorithm of multivariate latency correction
suitable for sparse data for which the relevant information is not primarily in
the rate but in the timing of each individual spike. The algorithm is designed
to correct systematic delays while maintaining all other kinds of noisy
disturbances. It consists of two steps, spike matching and distance
minimization between the matched spikes using simulated annealing. Results: We
show its effectiveness on simulated and real data: cortical propagation
patterns recorded via calcium imaging from mice before and after stroke. Using
simulations of these data we also establish criteria that can be evaluated
beforehand in order to anticipate whether our algorithm is likely to yield a
considerable improvement for a given dataset. Comparison with Existing
Method(s): Existing methods of latency correction rely on adjusting peaks in
rate profiles, an approach that is not feasible for spike trains with low
firing in which the timing of individual spikes contains essential information.
Conclusions: For any given dataset the criterion for applicability of the
algorithm can be evaluated quickly and in case of a positive outcome the
latency correction can be applied easily since the source codes of the
algorithm are publicly available.Comment: 15 pages, 9 figure
Eliminating Flooding-related Issues in Electrochemical COâ-to-CO Converters: Two Lines of Defense
By using silver (Ag) in nanostructured (nanowire, nanosphere, etc.) or thin-layer form as a catalyst for electrochemical CO2 reduction, very high CO-forming selectivity of almost 100% can be achieved. Supported by gas diffusion layers (GDLs), Â the reactant CO2 in the gas phase can approach and potentially access active Ag sites, which allows current densities in the range of a few hundred mAÂ cmâ2 to be reached. Yet, the stability of gas diffusion electrode (GDE) based electrochemical CO2-to-CO converters is far from perfect, and the activity of GDE cathodes, especially when operated at high current densities, often significantly decays during electrolyses after no more than a few hours. The primary reason of stability losses in GDE-based CO2-to-CO electrolysers is flooding: that is, the excess wetting of the GDE that prevents CO2 from reaching Ag catalytic sites. In the past years, the authors of this paper at Empa and at the University of Bern, cooperating with other partners of the National Competence Center for Research (NCCR) on Catalysis, took different approaches to overcome flooding. While opinions differ with regard to where the first line of defense in protecting GDEs from flooding should lie, a comparison of the recent results of the two groups gives unique insight into the nature of processes occurring in GDE cathodes used for CO2 electrolysis
- âŠ