147 research outputs found

    Conversion of Stem Cells to Cancer Stem Cells: Undercurrent of Cancer Initiation

    Get PDF
    Cancer stem cells (CSCs) also known as cancer-initiating cells (CIC), are responsible for the sustained and uncontrolled growth of malignant tumors and are proposed to play significant roles in metastasis and recurrence. Several hypotheses have proposed that the events in either stem and/or differentiated cells, such as genomic instability, inflammatory microenvironment, cell fusion, and lateral gene transfer, should be considered as the possible origin of CSCs. However, until now, the exact origin of CSC has been obscure. The development of induced pluripotent stem cells (iPSCs) in 2007, by Yamanaka's group, has been met with much fervency and hailed as a breakthrough discovery by the scientific and research communities, especially in regeneration therapy. The studies on the development of CSC from iPSCs should also open a new page of cancer research, which will help in designing new therapies applicable to CSCs. Currently most reviews have focused on CSCs and CSC niches. However, the insight into the niche before the CSC niche should also be of keen interest. This review introduces the novel concept of cancer initiation introducing the conversion of iPSCs to CSCs and proposes a relationship between the inflammatory microenvironment and cancer initiation as the key concept of the cancer-inducing niche responsible for the development of CSC

    The significance of ErbB2/3 in the conversion of induced pluripotent stem cells into cancer stem cells

    Get PDF
    Cancer stem cells (CSCs) are suggested to be responsible for drug resistance and aggressive phenotypes of tumors. Mechanisms of CSC induction are still under investigation. Our lab has established a novel method to generate CSCs from iPSCs under a cancerous microenvironment mimicked by the conditioned medium (CM) of cancer-derived cells. Here, we analyzed the transcriptome of CSCs, which were converted from iPSCs with CM from pancreatic ductal adenocarcinoma cells. The differentially expressed genes were identified and used to explore pathway enrichment. From the comparison of the CSCs with iPSCs, genes with elevated expression were related to the ErbB2/3 signaling pathway. Inhibition of either ErbB2 with lapatinib as a tyrosine kinase inhibitor or ErbB3 with TX1-85-1 or siRNAs arrested cell proliferation, inhibited the in vitro tumorigenicity, and lead to loss of stemness in the converting cells. The self-renewal and tube formation abilities of cells were also abolished while CD24 and Oct3/4 levels were reduced, and the MAPK pathway was overactivated. This study shows a potential involvement of the ErbB2/ErbB3 pathway in CSC generation and could lead to new insight into the mechanism of tumorigenesis and the way of cancer prevention

    Graduate School of Interdisciplinary Science and Engineering in Health Systems: The Design and Story of Establishment

    Get PDF

    Metastasis Model of Cancer Stem Cell-Derived Tumors

    Get PDF
    Metastasis includes the dissemination of cancer cells from a malignant tumor and seed in distant sites inside the body forming secondary tumors. Metastatic cells from the primary tumor can move even before the cancer is detected. Therefore, metastases are responsible for more than 90% of cancer-related deaths. Over recent decades there has been adequate evidence suggesting the existence of CSCs with self-renewing and drug-resistant potency within heterogeneous tumors. Cancer stem cells (CSCs) act as a tumor initiating cells and have roles in tumor retrieve and metastasis. Our group recently developed a unique CSC model from mouse induced pluripotent stem cells cultured in the presence of cancer cell-conditioned medium that mimics tumors microenvironment. Using this model, we demonstrated a new method for studying metastasis by intraperitoneal transplantation of tumors and investigate the metastasis ability of cells from these segments. First of all, CSCs were injected subcutaneously in nude mice. The developed malignant tumors were minimized then transplanted into the peritoneal cavity. Following this, the developed tumor in addition to lung, pancreas and liver were then excised and analyzed. Our method showed the metastatic potential of CSCs with the ability of disseminated and moving to blood circulation and seeding in distant organs such as lung and pancreas. This method could provide a good model to study the mechanisms of metastasis according to CSC theory

    Revisiting Cancer Stem Cells as the Origin of Cancer-Associated Cells in the Tumor Microenvironment: A Hypothetical View from the Potential of iPSCs

    Get PDF
    The tumor microenvironment (TME) has an essential role in tumor initiation and development. Tumor cells are considered to actively create their microenvironment during tumorigenesis and tumor development. The TME contains multiple types of stromal cells, cancer-associated fibroblasts (CAFs), Tumor endothelial cells (TECs), tumor-associated adipocytes (TAAs), tumor-associated macrophages (TAMs) and others. These cells work together and with the extracellular matrix (ECM) and many other factors to coordinately contribute to tumor growth and maintenance. Although the types and functions of TME cells are well understood, the origin of these cells is still obscure. Many scientists have tried to demonstrate the origin of these cells. Some researchers postulated that TME cells originated from surrounding normal tissues, and others demonstrated that the origin is cancer cells. Recent evidence demonstrates that cancer stem cells (CSCs) have differentiation abilities to generate the original lineage cells for promoting tumor growth and metastasis. The differentiation of CSCs into tumor stromal cells provides a new dimension that explains tumor heterogeneity. Using induced pluripotent stem cells (iPSCs), our group postulates that CSCs could be one of the key sources of CAFs, TECs, TAAs, and TAMs as well as the descendants, which support the self-renewal potential of the cells and exhibit heterogeneity. In this review, we summarize TME components, their interactions within the TME and their insight into cancer therapy. Especially, we focus on the TME cells and their possible origin and also discuss the multi-lineage differentiation potentials of CSCs exploiting iPSCs to create a society of cells in cancer tissues including TME

    A Novel Artificially Humanized Anti-Cripto-1 Antibody Suppressing Cancer Cell Growth

    Get PDF
    Cripto-1 is a member of the EGF-CFC/FRL1/Cryptic family and is involved in embryonic development and carcinogenesis. We designed a novel anti-Cripto-1 artificial antibody and assessed the recognition to the antigen and the potential to suppress the growth of cancer stem cells. First, single chain antibody clones were isolated by bio-panning with the affinity to recombinant Cripto-1 protein from our original phage-display library. Then, the variable regions of heavy chain VH and light chain VL in each clone were fused to constant regions of heavy chain CH and light chain CL regions respectively. These fused genes were expressed in ExpiCHO-S cells to produce artificial humanized antibodies against Cripto-1. After evaluation of the expression levels, one clone was selected and the anti-Cripto-1 antibody was produced and purified. The purified antibody showed affinity to recombinant Cripto-1 at 1.1 pmol and immunoreactivity to cancer tissues and cell lines. The antibody was available to detect the immunoreactivity in tissue microarrays of malignant tumors as well as in Cripto-1 overexpressing cells. Simultaneously, the antibody exhibited the potential to suppress the growth of human colon cancer derived GEO cells overexpressing Cripto-1 with IC50 at approximately 110 nM. The artificially humanized antibody is proposed to be a good candidate to target cancer cells overexpressing Cripto-1

    Paclitaxel-Based Chemotherapy Targeting Cancer Stem Cells from Mono- to Combination Therapy

    Get PDF
    Paclitaxel (PTX) is a chemotherapeutical agent commonly used to treat several kinds of cancer. PTX is known as a microtubule-targeting agent with a primary molecular mechanism that disrupts the dynamics of microtubules and induces mitotic arrest and cell death. Simultaneously, other mechanisms have been evaluated in many studies. Since the anticancer activity of PTX was discovered, it has been used to treat many cancer patients and has become one of the most extensively used anticancer drugs. Regrettably, the resistance of cancer to PTX is considered an extensive obstacle in clinical applications and is one of the major causes of death correlated with treatment failure. Therefore, the combination of PTX with other drugs could lead to efficient therapeutic strategies. Here, we summarize the mechanisms of PTX, and the current studies focusing on PTX and review promising combinations

    Cancer Stem Cell Microenvironment Models with Biomaterial Scaffolds In Vitro

    Get PDF
    Defined by its potential for self-renewal, differentiation and tumorigenicity, cancer stem cells (CSCs) are considered responsible for drug resistance and relapse. To understand the behavior of CSC, the effects of the microenvironment in each tissue are a matter of great concerns for scientists in cancer biology. However, there are many complicated obstacles in the mimicking the microenvironment of CSCs even with current advanced technology. In this context, novel biomaterials have widely been assessed as in vitro platforms for their ability to mimic cancer microenvironment. These efforts should be successful to identify and characterize various CSCs specific in each type of cancer. Therefore, extracellular matrix scaffolds made of biomaterial will modulate the interactions and facilitate the investigation of CSC associated with biological phenomena simplifying the complexity of the microenvironment. In this review, we summarize latest advances in biomaterial scaffolds, which are exploited to mimic CSC microenvironment, and their chemical and biological requirements with discussion. The discussion includes the possible effects on both cells in tumors and microenvironment to propose what the critical factors are in controlling the CSC microenvironment focusing the future investigation. Our insights on their availability in drug screening will also follow the discussion

    Cancer stem cells induced by chronic stimulation with prostaglandin E2 exhibited constitutively activated PI3K axis

    Get PDF
    Previously, our group has demonstrated establishment of Cancer Stem Cell (CSC) models from stem cells in the presence of conditioned medium of cancer cell lines. In this study, we tried to identify the factors responsible for the induction of CSCs. Since we found the lipid composition could be traced to arachidonic acid cascade in the CSC model, we assessed prostaglandin E2 (PGE2) as a candidate for the ability to induce CSCs from induced pluripotent stem cells (iPSCs). Mouse iPSCs acquired the characteristics of CSCs in the presence of 10 ng/mL of PGE2 after 4 weeks. Since constitutive Akt activation and pik3cg overexpression were found in the resultant CSCs, of which growth was found independent of PGE2, chronic stimulation of the receptors EP-2/4 by PGE2 was supposed to induce CSCs from iPSCs through epigenetic effect. The bioinformatics analysis of the next generation sequence data of the obtained CSCs proposed not only receptor tyrosine kinase activation by growth factors but also extracellular matrix and focal adhesion enhanced PI3K pathway. Collectively, chronic stimulation of stem cells with PGE2 was implied responsible for cancer initiation enhancing PI3K/Akt axis
    corecore