62 research outputs found

    Influence of genetic factors on toluene diisocyanate-related symptoms: evidence from a cross-sectional study

    Get PDF
    Background: Toluene diisocyanate (TDI) is a highly reactive compound used in the production of, e. g., polyurethane foams and paints. TDI is known to cause respiratory symptoms and diseases. Because TDI causes symptoms in only a fraction of exposed workers, genetic factors may play a key role in disease susceptibility. Methods: Workers (N = 132) exposed to TDI and a non-exposed group ( N = 114) were analyzed for genotype (metabolising genes: CYP1A1*2A, CYP1A1*2B, GSTM1*O, GSTM3*B, GSTP1 1105V, GSTP1 A114V, GSTT1*O, MPO -463, NAT1*3, *4, *10, *11, *14, *15, NAT2*5, *6, *7, SULT1A1 R213H; immune-related genes: CCL5 -403, HLA-DQB1* 05, TNF-308, TNF-863) and symptoms of the eyes, upper and lower airways ( based on structured interviews). Results: For three polymorphisms: CYP1A1*2A, CYP1A1*2B, and TNF -308 there was a pattern consistent with interaction between genotype and TDI exposure status for the majority of symptoms investigated, although it did reach statistical significance only for some symptoms: among TDI-exposed workers, the CYP1A1 variant carriers had increased risk (CYP1A1*2A and eye symptoms: variant carriers OR 2.0 95% CI 0.68-6.1, p-value for interaction 0.048; CYP1A1*2B and wheeze: IV carriers OR = 12, 1.4-110, p-value for interaction 0.057). TDI-exposed individuals with TNF-308 A were protected against the majority of symptoms, but it did not reach statistical significance. In the non-exposed group, however, TNF -308 A carriers showed higher risk of the majority of symptoms ( eye symptoms: variant carriers OR = 2.8, 1.1-7.1, p-value for interaction 0.12; dry cough OR = 2.2, 0.69-7.2, p-value for interaction 0.036). Individuals with SULT1A1 213H had reduced risk both in the exposed and non-exposed groups. Other polymorphisms, showed associations to certain symptoms: among TDI-exposed, NAT1*10 carriers had a higher risk of eye symptoms and CCL5 -403 AG+AA as well as HLA-DQB1 *05 carriers displayed increased risk of symptoms of the lower airways. GSTM1, GSTM3 and GSTP1 only displayed effects on symptoms of the lower airways in the non-exposed group. Conclusion: Specific gene-TDI interactions for symptoms of the eyes and lower airways appear to exist. The results suggest different mechanisms for TDI- and non- TDI-related symptoms of the eyes and lower airways

    Diagnostic properties of metabolic perturbations in rheumatoid arthritis

    Get PDF
    Introduction: The aim of this study was to assess the feasibility of diagnosing early rheumatoid arthritis (RA) by measuring selected metabolic biomarkers. Methods: We compared the metabolic profile of patients with RA with that of healthy controls and patients with psoriatic arthritis (PsoA). The metabolites were measured using two different chromatography-mass spectrometry platforms, thereby giving a broad overview of serum metabolites. The metabolic profiles of patient and control groups were compared using multivariate statistical analysis. The findings were validated in a follow-up study of RA patients and healthy volunteers. Results: RA patients were diagnosed with a sensitivity of 93% and a specificity of 70% in a validation study using detection of 52 metabolites. Patients with RA or PsoA could be distinguished with a sensitivity of 90% and a specificity of 94%. Glyceric acid, D-ribofuranose and hypoxanthine were increased in RA patients, whereas histidine, threonic acid, methionine, cholesterol, asparagine and threonine were all decreased compared with healthy controls. Conclusions: Metabolite profiling (metabolomics) is a potentially useful technique for diagnosing RA. The predictive value was without regard to the presence of antibodies against cyclic citrullinated peptides

    Biological and air monitoring of exposure to isocyanates

    No full text
    Exposure to isocyanates may induce disorders in the airways of workers. Therefore, application, development and validation of methods for exposure assessment is of great importance. In the present study, we have determined the personal air and biomarker levels of isocyanates for a group of occupationally exposed workers (n=170) in different types of industrial processes. Also, the biomarker levels were determined for a control group consisting of occupationally unexposed workers (n=121). A method with filters impregnated with 1-(2-methoxyphenyl)piperazine (2MP) was used for personal air monitoring of exposure in different types of manufacturing processes. The field performance of the 2MP method was evaluated. Short-term stationary measurements was collected in parallel with an impinger method using dibutylamine (DBA) in toluene. Also, the long-term performance was evaluated by parallel sampling with consecutive sampling by the 2MP method itself. The 2MP method was found to underestimate the air levels of some isocyanates. Correction factors were calculated that may adjust for these observed losses. A new bioanalytical method for determination of biomarkers of aromatic diisocyanates was validated. This method is more convenient, better characterized and more robust than previous methods. The biomarker levels of aromatic diisocyanates were determined in the two groups of workers and upper reference limits (URLs) were calculated. The URLs may be useful in a screening test to assess whether a worker is occupationally exposed to diisocyanates or not. The biomarkers of 4,4'-methylene diisocyanate (MDI) were present in 97% of the occupationally unexposed workers. This indicates an unknown source of background exposure. For the exposed workers, there were strong correlations between urinary and plasma biomarker levels of isocyanates and between air and biomarker levels of isocyanates. The biomarkers of toluene diisocyanate (TDI), 1,5-naphthalene diisocyanate (NDI) and MDI were shown to be applicable as an index of exposure. For TDI, strategies for biological monitoring of exposure were established, and biological limit values were proposed

    Aniline in hydrolyzed urine and plasma--possible biomarkers for phenylisocyanate exposure.

    No full text
    There are few studies on phenylisocyanate (PhI) exposure, although there are studies indicating that PhI is a very potent chemical sensitizer. The aim of this study was to evaluate aniline in urine and plasma as possible biomarkers of exposure to PhI. Occupational airborne exposure to PhI was measured during one day for 11 workers exposed to thermal degradation products from polyurethane with filters impregnated with 2-methoxyphenyl piperazine. A urine sample was collected from each worker on measurement day, and plasma samples were collected within the following 2 weeks. Urine and plasma samples also were collected from four unexposed subjects. The biological samples were hydrolyzed and analyzed with gas chromatography mass spectrometry. The time-weighted averages (TWA) for the workers were between 0.1 and 1.6 microg/m3. Aniline levels in urine were in the same range for the exposed and unexposed workers, but there was a significant correlation between air and urinary levels (Pearson's correlation coefficient r = 0.518; p = 0.05). All exposed workers had higher levels in the plasma samples than the highest control, and there was a significant correlation between the plasma levels and measured air levels (r = 0.675; p = 0.008). The conclusion is that aniline in hydrolyzed urine and plasma are possible biomarkers of exposure to PhI, and that the plasma biomarker is more sensitive, at least at this rather low exposure
    corecore