3 research outputs found
The role of cancer-associated fibroblasts in the invasion and metastasis of colorectal cancer
Colorectal cancer (CRC) is the third most common cancer and has ranked the third leading cause in cancerassociated death globally. Metastasis is the leading cause of death in colorectal cancer patients. The role of tumor microenvironment (TME) in colorectal cancer metastasis has received increasing attention. As the most abundant cell type in the TME of solid tumors, cancer-associated fibroblasts (CAFs) have been demonstrated to have multiple functions in advancing tumor growth and metastasis. They can remodel the extracellular matrix (ECM) architecture, promote epithelial-mesenchymal transition (EMT), and interact with cancer cells or other stromal cells by secreting growth factors, cytokines, chemokines, and exosomes, facilitating tumor cell invasion into TME and contributing to distant metastasis. This article aims to analyze the sources and heterogeneity of CAFs in CRC, as well as their role in invasion and metastasis, in order to provide new insights into the metastasis mechanism of CRC and its clinical applications
In Vitro
Gynostemma pentaphyllum (Thunb.) Makino (GpM) has been widely used in traditional Chinese medicine (TCM) for the treatment of various diseases including cancer. Most previous studies have focused primarily on polar fractions of GpM for anticancer activities. In this study, a nonpolar fraction EA1.3A from GpM showed potent growth inhibitory activities against four cancer cell lines with IC50 ranging from 31.62 μg/mL to 38.02 μg/mL. Furthermore, EA1.3A also inhibited the growth of breast cancer cell MDA-MB-453 time-dependently, as well as its colony formation ability. EA1.3A induced apoptosis on MDA-MB-453 cells both dose-dependently and time-dependently as analyzed by flow cytometry and verified by western blotting analysis of apoptosis marker cleaved nuclear poly(ADP-ribose) polymerase (cPARP). Additionally, EA1.3A induced cell cycle arrest in G0/G1 phase. Chemical components analysis of EA1.3A by GC-MS revealed that this nonpolar fraction from GpM contains 10 compounds including four alkaloids, three organic esters, two terpenes, and one catechol substance, and all these compounds have not been reported in GpM. In summary, the nonpolar fraction EA1.3A from GpM inhibited cancer cell growth through induction of apoptosis and regulation of cell cycle progression. Our study shed light on new chemical bases for the anticancer activities of GpM and feasibilities to develop new anticancer agents from this widely used medicinal plant
Rapamycin circumvents anti PD-1 therapy resistance in colorectal cancer by reducing PD-L1 expression and optimizing the tumor microenvironment
The unresectable or postoperative recurrence of advanced metastatic colorectal cancer (CRC) is the difficulty of its clinical management, and pharmacological therapy is the main source of benefit. Immune checkpoint inhibitors are therapeutic options but are effective in approximately 5 % of patients with deficient mismatch repair (MMR)/microsatellite instability CRC and are ineffective in patients with MMR-proficient (pMMR)/microsatellite stable (MSS) CRCs, which may be associated with the tumor microenvironment (TME). Here, we propose a new combination strategy and evaluate the efficacy of rapamycin (Rapa) combined with anti-PD-1 (αPD-1) in CT26 tumor-bearing mice, azoxymethane (AOM)/dextran sodium sulfate (DSS) inflammation-associated CRC mice, CT26-Luc tumor-bearing mice with postoperative recurrence, and CT26 liver metastasis mice. The results revealed that Rapa improved the therapeutic effect of αPD-1 and effectively inhibited colorectal carcinogenesis, postoperative recurrence, and liver metastasis. Mechanistically, Rapa improved the anticancer effect of αPD-1, associated with Rapa reprograming of the immunosuppressive TME. Rapa effectively depleted α-SMA+ cancer-associated fibroblasts and degraded collagen in the tumor tissue, increasing T lymphocyte infiltration into the tumor tissue. Rapa induced the downregulation of programed cell death 1 ligand 1 (PD-L1) protein and transcript levels in CT26 cells, which may be associated with the inhibition of the mTOR/P70S6K signaling axis. Furthermore, co-culture of tumor cells and CD8+ T lymphocytes demonstrated that Rapa-induced PD-L1 downregulation in tumor cells increased spleen-derived CD8+ T lymphocyte activation. Therefore, Rapa improves the anti-tumor effect of αPD-1 in CRCs, providing new ideas for its use to improve combinatorial strategies for anti-PD-1 immunotherapy