6 research outputs found

    Changes in gadoxetic-acid-enhanced MR imaging during the first year after irreversible electroporation of malignant hepatic tumors

    Get PDF
    Purpose To evaluate the appearance and size of ablation zones in gadoxetic-acid-enhanced magnetic resonance imaging (MRI) during the first year after irreversible electroporation (IRE) of primary or secondary hepatic malignancies and to investigate potential correlations to clinical features. Material and methods The MRI-appearance of the ablation area was assessed 1-3 days, 6 weeks, 3 months, 6 months, 9 months and 1 year after IRE. The size of the ablation zone and signal intensities of each follow-up control were compared. Moreover, relationships between clinical features and the MRI-appearance of the ablation area 1-3 days after IRE were analyzed. Results The ablation zone size decreased from 5.6 +/- 1.4 cm (1-3 days) to 3.7 +/- 1.2 cm (1 year). A significant decrease of central hypointensities was observed in T2-blade- (3 months), T2 haste- (6 weeks; 3 months; 6 months; 1 year), T1 arterial phase- (3 months; 1 year), and diffusion-sequences (6 weeks; 3 months; 6 months; 9 months; 1 year). The unenhanced T1-sequences showed significantly increasing central hypointensities (6 weeks; 3 months; 6 months; 9 months; 1 year). Significantly increasing peripheral hypointensities were detected in T1 arterial phase- (3 months; 6 months; 9 months; 1 year) and in T1 portal venous phase-sequences (6 weeks; 3 months; 6 months; 9 months; 1 year). Peripheral hypointensities of unenhanced T1-sequences decreased significantly 1 year after IRE. 1-3 days after IRE central T1 portal venous hypo- or isointensities were detected significantly more often than hyperintensities, if more than 3 IRE electrodes were used. Conclusion Hepatic IRE results in continuous reduction of ablation zone size during the first postinterventional year. In addition to centrally decreasing T1-signal and almost steadily increasing signal in the enhanced T2 haste-, diffusion- and T1 arterial phase-sequences, there is a trend toward long-term decreasing T1 arterial- and portal venous MRI-signal intensity of the peripheral ablation area, probably representing a region of reversible electroporation

    Magnetic Resonance Image Findings and Potential Anatomic Risk Factors for Chodromalacia in Children and Adolescents Suffering from Non-Overload Atraumatic Knee Pain in the Ambulant Setting

    No full text
    Purpose: To evaluate magnetic resonance image (MRI) findings in children and adolescents suffering from knee pain without traumatic or physical overload history and to identify potential anatomic risk factors. Material and Methods: A total of 507 MRIs of 6- to 20-year-old patients (251 males; 256 females) were evaluated with regard to detectable pathologies of the knee. The results were compared to a control group without pain (n = 73; 34 males; 39 females). A binary logistic regression model and t-tests for paired and unpaired samples were used to identify possible risk factors and significant anatomic differences of the study population. Results: In 348 patients (68.6%), at least one pathology was detected. The most commonly detected finding was chondromalacia of the patellofemoral (PF) joint (n = 205; 40.4%). Chondral lesions of the PF joint occurred significantly more often in knee pain patients than in the control group (40% vs. 11.0%; p = 0.001), especially in cases of a patella tilt angle > 5° (p ≤ 0.001), a bony sulcus angle > 150° (p = 0.002), a cartilaginous sulcus angle > 150° (p = 0.012), a lateral trochlear inclination p ≤ 0.001), a lateralised patella (p = 0.023) and a Wiberg type II or III patella shape (p = 0.019). Moreover, a larger patella tilt angle (p = 0.021), a greater bony sulcus angle (p = 0.042), a larger cartilaginous sulcus angle (p = 0.038) and a lower value of the lateral trochlear inclination (p = 0.014) were detected in knee pain patients compared to the reference group. Conclusion: Chondromalacia of the PF joint is frequently observed in children and adolescents suffering from non-overload atraumatic knee pain, whereby a patella tilt angle > 5°, a bony sulcus angle > 150°, a cartilaginous sulcus angle > 150°, a lateral trochlear inclination < 11°, a lateralised patella and a Wiberg type II or III patella shape seem to represent anatomic risk factors

    Magnetic Resonance Image Findings and Potential Anatomic Risk Factors for Chodromalacia in Children and Adolescents Suffering from Non-Overload Atraumatic Knee Pain in the Ambulant Setting

    Get PDF
    Purpose: To evaluate magnetic resonance image (MRI) findings in children and adolescents suffering from knee pain without traumatic or physical overload history and to identify potential anatomic risk factors. Material and Methods: A total of 507 MRIs of 6- to 20-year-old patients (251 males; 256 females) were evaluated with regard to detectable pathologies of the knee. The results were compared to a control group without pain (n = 73; 34 males; 39 females). A binary logistic regression model and t-tests for paired and unpaired samples were used to identify possible risk factors and significant anatomic differences of the study population. Results: In 348 patients (68.6%), at least one pathology was detected. The most commonly detected finding was chondromalacia of the patellofemoral (PF) joint (n = 205; 40.4%). Chondral lesions of the PF joint occurred significantly more often in knee pain patients than in the control group (40% vs. 11.0%; p = 0.001), especially in cases of a patella tilt angle > 5° (p ≤ 0.001), a bony sulcus angle > 150° (p = 0.002), a cartilaginous sulcus angle > 150° (p = 0.012), a lateral trochlear inclination 5°, a bony sulcus angle > 150°, a cartilaginous sulcus angle > 150°, a lateral trochlear inclination < 11°, a lateralised patella and a Wiberg type II or III patella shape seem to represent anatomic risk factors

    Using AI and Gd-EOB-DTPA-enhanced MR imaging to assess liver function, comparing the MELIF score with the ALBI score

    No full text
    Abstract Monitoring disease progression is particularly important for determining the optimal treatment strategy in patients with liver disease. Especially for patients with diseases that have a reversible course, there is a lack of suitable tools for monitoring liver function. The development and establishment of such tools is very important, especially in view of the expected increase in such diseases in the future. Image-based liver function parameters, such as the T1 relaxometry-based MELIF score, are ideally suited for this purpose. The determination of this new liver function score is fully automated by software developed with AI technology. In this study, the MELIF score is compared with the widely used ALBI score. The ALBI score was used as a benchmark, as it has been shown to better capture the progression of less severe liver disease than the MELD and Child‒Pugh scores. In this study, we retrospectively determined the ALBI and MELIF scores for 150 patients, compared these scores with the corresponding MELD and Child‒Pugh scores (Pearson correlation), and examined the ability of these scores to discriminate between good and impaired liver function (AUC: MELIF 0.8; ALBI 0.77) and to distinguish between patients with and without cirrhosis (AUC: MELIF 0.83, ALBI 0.79). The MELIF score performed more favourably than the ALBI score and may also be suitable for monitoring mild disease progression. Thus, the MELIF score is promising for closing the gap in the available early-stage liver disease monitoring tools (i.e., identification of liver disease at a potentially reversible stage before chronic liver disease develops)

    Prediction of transarterial chemoembolization (TACE) outcome by pre- and postinterventional 13C-methacetin breath test

    No full text
    BACKGROUND AND OBJECTIVE: Liver function is one of the most important parameters for the outcome of transarterial chemoembolization (TACE). The liver maximum capacity (LiMAx) test is a bedside test that provides a real-time option for liver function testing. The objective of this pilot study was to investigate the suitability of the LiMAX test for predicting the TACE outcome. METHODS: 20 patients with intermediate-stage hepatocellular carcinoma (HCC) received a LiMAx test 24 h pre and post TACE. In addition, laboratory values were collected to determine liver function and model for endstage liver disease (MELD) scores. The success of TACE was assessed 6 weeks post intervention by morphological imaging tests using modified response evaluation criteria in solid tumors (mRECIST). RESULTS: Patients with an objective response (OR = CR+ PR) according to mRECIST post TACE had significantly higher values in the pre-interventional LiMAx test than patients with a non-OR (PD or SD) post TACE (r(14) = 0.62, p = 0.01). Higher pre-interventional LiMAx values therefore indicate OR. Patients with a disease control (DC = CR+ PR+ SD) according to mRECIST post TACE had significantly higher values in the pre-interventional LiMAx test than patients with a non-DC (PD) post TACE (r(14) = 0.65, p = 0.01). Higher pre-interventional LiMAx values therefore indicate DC. The point biserial correlations of LiMAx values pre and post TACE with the outcome OR or DC were descriptively stronger than those of MELD with OR or DC. This suggests that the LiMAx test correlates better with the treatment response than the MELD score. CONCLUSIONS: For the first time, we were able to show in our study that patients who are scheduled for TACE could benefit from a LiMAx test to be able to estimate the benefit of TACE. The higher the pre-interventional LiMAx values, the higher the benefit of TACE. On the other hand, laboratory parameters summarized in the form of the MELD score had significantly less descriptive correlation with the TACE outcome

    MELIF, a Fully Automated Liver Function Score Calculated from Gd-EOB-DTPA-Enhanced MR Images: Diagnostic Performance vs. the MELD Score

    No full text
    In the management of patients with chronic liver disease, the assessment of liver function is essential for treatment planning. Gd-EOB-DTPA-enhanced MRI allows for both the acquisition of anatomical information and regional liver function quantification. The objective of this study was to demonstrate and evaluate the diagnostic performance of two fully automatically generated imaging-based liver function scores that take the whole liver into account. T1 images from the native and hepatobiliary phases and the corresponding T1 maps from 195 patients were analyzed. A novel artificial-intelligence-based software prototype performed image segmentation and registration, calculated the reduction rate of the T1 relaxation time for the whole liver (rrT1(liver)) and used it to calculate a personalized liver function score, then generated a unified score-the MELIF score-by combining the liver function score with a patient-specific factor that included weight, height and liver volume. Both scores correlated strongly with the MELD score, which is used as a reference for global liver function. However, MELIF showed a stronger correlation than the rrT1(liver) score. This study demonstrated that the fully automated determination of total liver function, regionally resolved, using MR liver imaging is feasible, providing the opportunity to use the MELIF score as a diagnostic marker in future prospective studies
    corecore